Шпаргалка: Основы гидрогазодинамики
Если бы скалярно умножили исходное уравнение на вектор угловой скорости, то получили бы аналогичный результат вдоль вихревой линии.
Если течение потенциальное, то и сразу же получается:
и
во всем потоке, т.е. трехчлен Бернулли сохраняет постоянное значение во всей области потенциального потока.
Рассмотрим потенциальное течение несжимаемой жидкости под действием сил тяжести. Т.к. жидкость несжимаема то :
У сил тяжести потенциал равен: , z – координата.
(1), - удельный вес
Все эти составляющие имеют размерность давления и называются напорами: - скоростной или динамический напор; р – пьезометрический напор; - геометрический напор; ро – полный напор
При стационарном течении идеальной несжимаемой жидкости полный напор, равный сумме , сохраняет постоянное значение вдоль любой линии тока, а при потенциальном течении во всей области потока.
В задачах, в которых можно пренебречь влиянием геометрического напора, уравнение Бернулли упрощается и приобретает вид:
Уравнение (1) разделим на , тогда:
все компоненты измеряются в метрах и называются высотами: - скоростная высота, - пьезометрическая высота, z – нивелирная высота, Н – гидравлическая высота. При стационарном движении идеальной несжимаемой жидкости высота
сохраняет постоянное значение вдоль любой линии тока (или вихревой линии), а при потенциальном течении во всем токе.
14. Основные понятия и определения потенциальных течений
Потенциальные течения – это течения, у которых во всем потоке, следовательно существует функция φ , называемая потенциалом, зависит φ(х,у, z , t ) и связана с составляющими U соотношениями:
то есть
Записанные соотношения могут быть записаны и для любой другой функции, которая отличается от φ на константу: . Таким образом, уравнение потенциала определяется с точностью до константы. Геометрическое место точек с одинаковым значением φ образуют эквипотенциальные поверхности, уравнения которых: . Так как , следовательно вектор U расположен по перпендикулярам в любой точке эквипотенциальной поверхности. Так как вектор U касателен к линии тока, то линии тока перпендикулярны эквипотенциальной поверхности.
Рассмотрим стационарное плоское течение, то есть , тогда
и .
Уравнение сплошности имеет вид:
Таким образом, потенциал U удовлетворяет уравнению Лапласа, следовательно является гармонической функцией.
Введем в рассмотрение функцию ψ, связанную с составляющими U уравнениями:
и