Шпаргалка: Основы гидрогазодинамики

ψ – функция тока, она также определяется с точностью до постоянной.

Уравнение называется уравнением линии тока.

В плоских течениях эквипотенциальные поверхности дают проекции на плоскость (х,у) в виде линии, поэтому часто в задачах рассматриваются эквипотенциальные линии которые перпендикулярны линии тока.

В потенциальном потоке , в плоском течении

функция тока ψ гармоническая

Сравнение потенциала φ и ψ позволяет записать:

-

условие Коши-Римана.

15. Комплексный потенциал, комплексная скорость

Из теории комплексной переменной известно, что если две функции φ и ψ, зависящие от х и у , удовлетворяют условиям Коши-Римана, то комплексная величина будет не просто зависеть, а являться функцией от комплексной переменной , то есть существует некоторая функция , действительной частью которой является φ , а мнимой ψ . .

Функция имеет большое значение при изучении плоских потенциальных течений и называется комплексным потенциалом или характеристической функцией течения.

Так как является аналитической функцией от , то ее производная не зависит от направления дифференцирования, а зависит только от положения точки в пространстве, то есть

по условию Коши-Римана:

Если вектор U разложить в комплексной плоскости годографа U , то .

Производная от комплексного потенциала дает зеркальное изображение комплексной U относительно действительной оси. Обозначим ее как

.


В теории комплексной переменной числа и называют сопряженными, назовем как сопряженную U . Таким образом, производная от комплексного потенциала определяет .

Таким образом, если изменяется какое-то плоское потенциальное течение, то для него можно подобрать уравнение комплексного потенциала, проанализировать его и просчитать составляющие U в любой точке. С другой стороны для любого потенциала можно определить вид течения.

16. Частные случаи плоских потенциальных течений

1. Плоско параллельный поток:

Рассмотрим комплексный потенциал - , где а – действительное число

и

К-во Просмотров: 736
Бесплатно скачать Шпаргалка: Основы гидрогазодинамики