Шпаргалка: Основы гидрогазодинамики
- система уравнений движения для и.ж. в форме Громека
Рассмотрим далее движение, предполагая, что массовая сила имеет потенциал и течение баротропное.
Первое предположение утверждает, что у массовых сил имеется потенциал, связанный соотношениями с массовыми силами:
; ; ,
U - потенциал массовых сил.
Второе: баротропным считается течение, у которого ρ считается только функцией давления.
Например, баротропными течением является:
1) ρ= const – газ или жидкость несжимаемы
2) движение среды изотермическое -
3) движение среды адиабатное -
Условие баротропности предполагает, что существует некоторая функция Р , зависящая от давления, которая определяется выражением:
Функция Р связана с р и ρ соотношениями:
; ; .
Подставим в систему уравнений Громека потенциал массовых сил и функцию Р :
- система уравнений Эйлера в форме Громека
Достоинство системы заключается в том, что отдельно выделен ротор, который при определенных условиях может быть равен нулю и система значительно упрощается. Последний член равен нулю, если: 1) - статическая задача; 2) - течение безвихревое или потенциальное.
Сумма, стоящая во второй компоненте, имеет определенный физический смысл. В векторной форме система может быть записана в виде одного уравнения:
13. Теорема Бернулли
Рассмотрим стационарное баротропное течение под действием массовых сил, т.е. можно записать:
умножим уравнение скалярно на вектор скорости, тогда последний член равен нулю, т.к. идет скалярное перемножение перпендикулярных векторов.
- единичный вектор в направлении вектора скорости. Вектор скорости направлен по касательной к линии тока или к траектории, т.к. течение стационарное, следовательно:
- производная по направлению.