Шпаргалка: Основы гидрогазодинамики
систему можно записать в виде одного уравнения в векторной форме записи:
10. Напряжения, действующие в идеальной жидкости
В идеальной жидкости отсутствуют силы трения, следовательно касательные напряжения равны нулю. Применительно к элементарному тетраэдру проекция напряжения, приложенного к произвольной наклонной грани на ось х равна:
С другой стороны:
Аналогично для проекций на у :
и
Таким образом в идеальной жидкости величина нормального напряжения в любой точке не зависит от направления площадки к которой напряжение приложено. В идеальной жидкости величина нормального напряжения в точке называется гидродинамическим давлением в этой точке. Модель идеальной жидкости упростила постановку и решение многих задач, в которых влиянием сил трения можно пренебречь.
Знак «минус» ставится, т.к. жидкость оказывает давление на выделенный объем в направлении противоположном внешней нормали.
11. Уравнение движения идеальной жидкости (Эйлера)
Для вывода воспользуемся уравнениями движения в напряжениях:
- система уравнения Эйлера для идеальной жидкости.
Справедлива, как для сжимаемой, так и для несжимаемой жидкости. Если жидкость сжимаемая, то необходимо ввести функцию координаты от времени:
Если жидкость несжимаемая, то
12. Уравнение движения идеальной жидкости (Эйлера) в форме Громека
Все преобразования выполним на первом уравнении:
Отсюда: