Шпаргалка: Шпаргалка по Математическому анализу
Замечательные пределы
*1-й замечательный предел.
Возьмем круг радиуса 1, обозначим
радианную меру угла MOB через Х.
Пусть 0 < X < π/2. На рисунке |АМ| = sin x, дуга МВ численно равна центральному углу Х, |BC| = tg x. Тогда
Разделим все на и получим:
Т.к. , то по признаку существования пределов следует .
*2-й замечательный предел.
Пусть х→∞. Каждое значение х заключено между двумя положительными целыми числами:
Если x→∞, то n→∞, тогда
По признаку о существовании пределов:
Теоремы о функциях, непрерывных на отрезке.
Рассмотрим некоторые свойства функций непрерывных на отрезке. Эти свойства приведём без доказательства.
Функцию называют непрерывной на отрезке [a,b], если она непрерывна во всех внутренних точках этого отрезка, а на его концах, т.е. в точках a и b, непрерывна соответственно справа и слева.
Теорема 1. Функция, непрерывная на отрезке [a,b], хотя бы в одной точке этого отрезка принимает наибольшее значение и хотя бы в одной – наименьшее.
*Теорема утверждает, что если функция непрерывна на отрезке [a,b], то найдётся хотя бы одна точка такая, что значение функции в этой точке будет самым большим из всех ее значений на этом отрезке: . Аналогично найдётся такая точка , в которой значение функции будет самым маленьким из всех значений на отрезке: .
Ясно, что таких точек может быть и несколько, например, на рисунке показано, что функция принимает наименьшее значение в двух точках и .
Замечание. Утверждение теоремы можно стать неверным, если рассмотреть значение функции на интервале (a,b). Действительно, если рассмотреть функцию на (0,2), то она непрерывна на этом интервале, но не достигает в нём ни наибольшего, ни наименьшего значений: она достигает этих значений на концах интервала, но концы не принадлежат нашей области.
Также теорема перестаёт быть верной для разрывных функций. Приведите пример.
Следствие. Если функция непрерывна на [a,b], то она ограничена на этом отрезке.
Теорема 2. Пусть функция непрерывна на отрезке [a,b] и на концах этого отрезка принимает значения разных знаков, тогда внутри отрезка [a,b] найдётся по крайней мере одна точка , в которой функция обращается в ноль: , где a < C< b
Эта теорема имеет простой геометрический смысл: если точки графика непрерывной функции , соответствующие концам отрезка [a,b] лежат по разные стороны от оси Ох, то этот график хотя бы в одной точке отрезка пересекает ось Ох. Разрывные функции этим свойством могут не обладать.