Учебное пособие: Аналитическая геометрия

Т.к. свободный член входит в общее уравнение прямой со знаком «+», у нормирующего множителя выбираем знак минус:

Умножаем на него общее уравнение прямой АВ

Обратите внимание : множители при x и y меньше единицы – это значения синуса и косинуса угла между нормалью к прямой и положительным направлением оси Ox .

Шаг 2

Подставляем в полученное нормальное уравнение прямой координаты точки С:

Ответ

Ответ тот же: расстояние от точки С до прямой АВ 10 единиц, но второй путь гораздо короче.

2. ОСНОВНЫЕ ЛИНИИ ВТОРОГО ПОРЯДКА

Ниже будут рассмотрены основные линии второго порядка: окружность, эллипс и гипербола; а также задачи, связанные с этими линиями и прямой.

2.1 Окружность

Определение окружности

Окружностью называется плоская линия, каждая из точек которой равноудалена от данной, называемой центром окружность.

Окружность описывается алгебраическим выражением второго порядка

где точка С(a; b) – центр окружности, r – радиус окружности.

Вообще любое выражение вида

x 2 + y 2 + l x + m y + n = 0 ,

определяет окружность, если

l = -2a, m = - 2b, n = a2 + b2 – r2 .

При этом, если

- l 2 + m2 – 4n = 0, то указанное уравнение определяет точку ;

- l 2 + m2 – 4n < 0, то указанное уравнение не имеет геометрического смысла, поскольку определяет мнимую окружность .

Пример 17 (координаты центра и радиус окружности)

Найти координаты центра окружности

2∙x2 + 2∙y2 - 8∙x + 5∙y – 4 = 0.

Решение

Для того, что бы множитель при x2 и y2 были равны единице, делим обе части равенства на 2 и перегруппировываем члены выражения

К-во Просмотров: 788
Бесплатно скачать Учебное пособие: Аналитическая геометрия