Учебное пособие: Аналитическая геометрия

Линия в пространстве

4.1 Плоскость, как поверхность первого порядка

Уравнение плоскости, проходящей через данную точку и перпендикулярной данному вектору

Пример 30 (получение уравнения плоскости)

Общее уравнение плоскости

Неполные уравнения плоскости

Уравнение плоскости в отрезках

Угол между двумя плоскостями

Условие перпендикулярности двух плоскостей

Условие параллельности двух плоскостей

1. МЕТОД КООРДИНАТ. ОСОНОВНЫЕ ЗАДАЧИ АНАЛИТИЧЕСКОЙ ГЕОМЕТРИИ НА ПРЯМОЙ И НА ПЛОСКОСТИ

1.1 Задачи на прямой линии

Ось координат

Прямую линию с указанием начала отсчета, положительного направления отсчета и масштаба назовем осью координат.

Рис.1

координаты прямая плоскость вектор

Направленный отрезок

Отрезок на оси называется направленным, если известно, какая из точек отрезка является началом, а какая концом отрезка.

С каждым направленным отрезком связаны две числовые характеристики: длина отрезка и величина (разницу между этими характеристиками необходимо четко представлять, поскольку непонимание имеющейся разниы приводит к путанице и ошибкам при решении задач).

Величина отрезка

Величина отрезка может быть как положительной, так и отрицательной : если направление отрезка противоположно положительному направлению оси, то его величина отрицательна ; если направление отрезка сонаправлено с положительным направлением оси, то его величина положительна .


Длина отрезка

Длина отрезка всегда положительна и равно абсолютному значению (модулю) величины отрезка.

Обозначения: величина - ; длина - .

Основное геометрическое тождество

При любом взаимном расположении несовпадающих точек А, В и С выполняется тождество

Координата точки на прямой

Если всю ось обозначить Ох, а через x1 – величину отрезка Оx1 , то точка А, находящаяся в точке x1 , (Рис.2) будет иметь координату x1 : А(x1 ).

К-во Просмотров: 780
Бесплатно скачать Учебное пособие: Аналитическая геометрия