Учебное пособие: Традиционные методы вычислительной томографии

= (2.6)

Для функции , отличной от нуля в пределах некоторой ограниченной области, ее радоновский образ также определяется выражением (2.3), только интегрирование проводится не по всей плоскости, а задается границами данной области. Так, если отлична от нуля внутри круга радиуса , то вместо (2.6) имеем

. (2.7)

В общем случае функция, описывающая радоновский образ, обладает одним важным свойством

. (2.8)

Физический смысл этого свойства состоит в том, что любые пары и согласно (2.1) задают одну и ту же прямую.

Приведем примеры, которые иллюстрируют вычисление радоновских образов.

Пример 1.

Пусть . Подставим это выражение в (2.6) и получим (см. Приложение А)

=

=. (2.9)

Из (2.9) следует, что если функция отлична от нуля в точке , то функция, описывающая ее образ в пространстве Радона , отлична от нуля на линии

, (2.10)


??? .

Рисунок 5. - функция (а) и ее радоновский образ (б)

Пример 2 .

Пусть . Подставляя это выражение в (2.6), получим

. (2.11)


Рисунок 6. Функция (а) и ее радоновский образ (б)

Область, где принимает максимальные значения, представляет собой линию, которая определяется выражением (2.10).

Пример 3.

При (2.12)

получаем

(2.13)



??????? 7. ??????? (?) ? ?? ??????????? ????? (?)

2.2 В случае самоизлучающего объекта основной задачей ЭВТ является задача восстановления двумерного распределения источников излучения . Для простоты будем считать, что область, в которой распределены источники излучения, целиком расположена в области поглощения излучения, характеризующейся функцией распределения коэффициента ослабления . Обычно при измерениях с помощью ЭВТ, также как и при ТВТ, используют круговую схему с параллельными проекциями.


Рисунок 8. Круговая геометрия измерений в ЭВТ.

В [3] показано, что для ЭВТ с постоянным коэффициентом ослабления экспоненциальное преобразование Радона в декартовых координатах имеет вид

, (2.14)

а в полярных координатах

. (2.15)

К-во Просмотров: 361
Бесплатно скачать Учебное пособие: Традиционные методы вычислительной томографии