Бассейн наполняется двумя трубами действующими одновременно за 2 часа. За сколько часов может наполнить бассеин первая труба если она действуя одна наполняет бассеин на 3 часа быстрее, чем вторая.

Бассейн наполняется двумя трубами действующими одновременно за 2 часа. За сколько часов может наполнить бассеин первая труба если она действуя одна наполняет бассеин на 3 часа быстрее, чем вторая.
Гость
Ответ(ы) на вопрос:
Гость
1:2=1/2 часть бассейна наполняют обе трубы за 1 час Пусть х часов - то время, за которое может наполнить бассейн первая труба, тогда вторая труба наполняет бассейн за (х+3) часов. За 1 час работы первая труба наполнит 1/х часть бассейна, вторая - 1/(х+3), а обе - 1/х+1/(х+3) или 1/2 бассейна. Составим и решим уравнение: 1/х+1/(х+3)=1/2  |*2x(x+3) 2x+6+2x=x^2+3x x^2+3x-4x-6=0 x^2-x-6=0 по теореме Виета: х1=3; х2=-2<0 (не подходит) Ответ: первая труба может наполнить бассейн за 3 часа.
Не нашли ответ?
Ответить на вопрос
Похожие вопросы