Через вершину конуса проведена плоскость под углом альфа к плоскости основания. Э
Через вершину конуса проведена плоскость под углом альфа к плоскости основания. Эта плоскость пересекает основание конуса по хорде, которая видна из центра основания под углом бетта. Определить площадь полной поверхности, если расстояние от центра основания до сечения равна d
Ответ(ы) на вопрос:
Дан конус с вершиной Е. ЕО - высота, АВ - хорда, ОМ⊥АВ, ОК=d, ∠ОАМ=α, ∠АОВ=β.
В тр-ке АОМ АО - радиус основания, АО=ОМ/cos(β/2)=d/cos(β/2), AM=OM·tg(β/2)=d·tg(β/2).
В тр-ке ЕОМ ЕМ=ОМ/sinα=d/sinα.
В тр-ке ЕАМ
Площадь боковой поверхности:
Площадь основания: Sосн=πR²=πd²/cos²(β/2)
Общая площадь равна сумме площадей основания и боковой поверхности: Sобщ=Sосн+Sбок.
Не нашли ответ?
Похожие вопросы