Стороны одного треугольника равны 21 см , 27 см , 12 см . Стороны другого треугольника относятся как 7 : 9 : 4 , а его большая сторона равна 54 см . найдите отношения площадей этих треугольников .

Стороны одного треугольника равны 21 см , 27 см , 12 см . Стороны другого треугольника относятся как 7 : 9 : 4 , а его большая сторона равна 54 см . найдите отношения площадей этих треугольников .
Гость
Ответ(ы) на вопрос:
Гость
1) найдём стороны второго треугольника пусть x-одна часть тогда 7x см - средняя сторона 9x см - большая сторона 4x см - меньшая сторона известно, что большая сторона ровна 54 см составим уравнение: 9x=54 x=54/9=6 меньшая сторона = 4x=4*6=24 см средняя сторона = 7x=7*6=42 см 2) найдём площади треугольников Воспользуемся формулой Герона: [latex]S=\sqrt[]{p(p-a)(p-b)(p-c)}[/latex], где p - полупериметр треугольника, а a, b и c - его стороны: [latex]S1=\sqrt{\frac{21+27+12}{2}(\frac{21+27+12}{2}-21)(\frac{21+27+12}{2} - 27)(\frac{21+27+12}{2}-12)}=\sqrt{14580}[/latex] [latex]S2=\sqrt{\frac{54+24+42}{2}(\frac{54+24+42}{2}-42)(\frac{54+24+42}{2} - 54)(\frac{54+24+42}{2}-24)}=\sqrt{233280}[/latex] 3) сравним площади: [latex]\frac{S1}{S2}=\frac{\sqrt{14580}}{\sqrt{233280}}=\sqrt{\frac{14580}{233280}}=0.25=\frac{1}{4}[/latex] Ответ: [latex]\frac{S1}{S2}=\frac{1}{4}[/latex]
Не нашли ответ?
Ответить на вопрос
Похожие вопросы