В конус,осевое сечение которого правильный треугольник,вписан шар.Найдите отношение объемов конуса и шара.

В конус,осевое сечение которого правильный треугольник,вписан шар.Найдите отношение объемов конуса и шара.
Гость
Ответ(ы) на вопрос:
Гость
Пусть нам известен РАДИУС ВПИСАННОЙ ОКРУЖНОСТИ в осевое сечение (это, между прочим, радиус шара). Тогда высота треугольника H = 3*r; (Это - высота конуса... правильный треугольник, все так легко :)) ПОЛОВИНА СТОРОНЫ треугольника равна r*ctg(pi/6) = r*корень(3).(Это, как мы понимаем, радиус основания конуса). Объем конуса Vc = (pi/3)*(r*корень(3))^2*3*r = 3*pi*r^3. а объем шара Vs = (4/3)*pi*r^3. Ну, тогда Vc/Vs = 9/4;
Не нашли ответ?
Ответить на вопрос
Похожие вопросы