Дипломная работа: Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку
(2.13), . Маємо:
, .
Коріння - дійсні й різні за знаком, отже крапка N1 (0,-1) - сідло.
Досліджуємо крапку N2 (0,1). Згідно (2.13) складемо характеристичне рівняння:
, .
Коріння - дійсні й одного знака, значить крапка N2 (0,1) - стійкий вузол.
Досліджуємо кінці осі y за допомогою перетворення [7] . Це перетворення переводить систему (2.8) у систему:
(2.14)
де .
Для дослідження станів рівноваги на кінцях осі y, нам необхідно досліджувати тільки крапку N3 (0,0). Складемо характеристичне рівняння в крапці N3 (0,0):
,
Коріння - дійсні й одного знака, значить крапка N3 (0,0) - нестійкий вузол.
Тепер дамо розподіл станів рівноваги системи (2.1) у вигляді таблиці 2.
Таблиця 2.
d |
|
|
|
|
∞ | ||
N1 |
N2 |
N3 | |||||
(-∞; 0) |
сідло |
невуст. вузол |
вуст. вузол |
К-во Просмотров: 437
Бесплатно скачать Дипломная работа: Дослідження двовимірної квадратичної стаціонарної системи із двома приватними інтегралами у вигляді кривих другого порядку
|