Дипломная работа: Дослідження проблеми тригонометричних рівнянь
те заміна приводить його до квадратного, оскільки
( ) і .
Якщо замість доданка буде, то потрібна заміна буде
Рівняння
зводиться до квадратного рівняння
поданням як . Легко перевірити, що при яких , не є коріннями рівняння, і, зробивши заміну , рівняння зводиться до квадратного.
Приклад Вирішити рівняння
Рішення. Перенесемо в ліву частину, замінимо її на
, і виразимо через і
Після спрощень одержимо
Розділимо по членне на , зробимо заміну :
Вертаючись до , знайдемо
Рівняння, однорідні відносно ,
Розглянемо рівняння виду
де , , , ..., , --- дійсні числа. У кожному складати^ся лівої частини рівняння ступеня одночленів рівні , тобто сума ступенів синуса й косинуса та сама й дорівнює . Таке рівняння називається однорідним відносно й , а число називається показником однорідності.
Ясно, що якщо , те рівняння прийме вид:
рішеннями якого є значення , при яких , тобто числа , . Друге рівняння, записане в дужках також є однорідним, але ступеня на 1 нижче.
Якщо ж , то ці числа не є коріннями рівняння .
При одержимо: , і ліва частина рівняння (1) приймає значення .
Отже, при , і , тому можна розділити обидві частини рівняння на . У результаті одержуємо рівняння: