Дипломная работа: Дослідження універсальних абелевих алгебр
Визначення 1.11. Клас алгебраїчних систем називається формацією, якщо виконуються наступні умови:
1) кожний гомоморфний образ кожної -системи належить ;
2) усякий кінцевий піддекартовий добуток -систем належить .
Визначення 1.12. Формальне вираження , де й – слова сигнатури в рахунковому алфавіті , називається тотожністю сигнатури . Скажемо, що в алгебрі виконане тотожність , якщо після заміни букв будь-якими елементами алгебри й здійснення вхідних у слова й операцій ліворуч і праворуч виходить той самий елемент алгебри , тобто для будь-яких в алгебрі має місце рівність
Визначення 1.13. Клас алгебр сигнатури називається різноманіттям, якщо існує множина тотожностей сигнатури таке, що алгебра сигнатури належить класу тоді й тільки тоді, коли в ній виконуються всі тотожності із множини . Різноманіття називається мальцевським, якщо воно складається з алгебр, у яких всі конгруенції перестановочні.
2. Властивості централізаторів конгруенції універсальних алгебр
Нагадаємо, що клас алгебр сигнатури називається різноманіттям, якщо існує множина тотожностей сигнатури таке, що алгебра сигнатури належить класу тоді й тільки тоді, коли в ній виконуються всі тотожності із множини .
Різноманіття називається мальцевським, якщо воно складається з алгебр, у яких всі конгруенції перестановочні.
Усе алгебри вважаються приналежними деякому фіксованому мальцевському різноманіттю. Використовуються стандартні позначення й визначення з[2].
У даній роботі конгруенції довільної алгебри будемо позначати грецькими буквами.
Якщо – конгруенція на алгебрі , то
суміжний клас алгебри по конгруенції . або – діагональ алгебри .
Для довільні конгруенції й на алгебрі будемо позначати множину всіх конгруенції на алгебрі таких, що
тоді й тільки тоді, коли
Тому що , та множина не порожньо.
Наступне визначення дається в роботі[2].
Визначення 2.1. Нехай і – конгруенції на алгебрі . Тоді централізує (записується: ), якщо на існує така конгруенція , що:
1) з
завжди треба
2) для будь-якого елемента
завжди виконується