Дипломная работа: Дослідження універсальних абелевих алгебр
3) якщо
те
Під терміном «алгебра» надалі будемо розуміти універсальну алгебру. Всі розглянуті алгебри передбачаються вхідними у фіксоване мальцевське різноманіття .
Наступні властивості отримані Смітом[3], сформулюємо у вигляді леми.
Лема 2.1. Нехай . Тоді:
1) існує єдина конгруенція , що задовольняє визначенню 2.1;
2) ;
3) якщо
те
З леми 2.1. і леми Цорна треба, що для довільної конгруенції на алгебрі завжди існує найбільша конгруенція, що централізує . Вона називається централізатором конгруенції в і позначається .
Зокрема, якщо , те централізатор у будемо позначати .
Лема 2.2. Нехай , – конгруенції на алгебрі , , , . Тоді справедливі наступні твердження:
1) ;
2) , де ;
3) якщо виконується одне з наступних відносин:
4) із завжди треба
Доказ:
1) Очевидно, що – конгруенція на , що задовольняє визначенню 2.1. У силу пункту 1) леми 2.1. і .
2) – конгруенція на , що задовольняє визначенню 2.1. Значить