Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго порядка
(2.17)
То есть частные интегралы (1.3) и (1.13) преобразовываются в прямые таким образом, что интегральная кривая (2.16) совпадает с одной из прямых интегральной кривой (2.17).
Найдем состояния равновесия системы (2.15). Приравняв правые части системы нулю, и исключив переменную y, получим следующее уравнение для определения абсцисс состояний равновесия:
(2.18)
Из (2.18) получаем, что
, , .
Ординаты точек покоя имеют вид:
, , .
Итак, имеем точки
, , .
Исследуем поведения траекторий в окрестностях состояний равновесия .
Исследуем состояние равновесия в точке .
Составим характеристическое уравнение.
Отсюда
(2.19)
Следовательно, характеристическое уравнение примет вид
Имеем
,
Или
.
Характеристическими числами для точки для системы (2.15) будут
.
Корни - комплексные и зависят от параметра d. Значит, если d<0, то точка - устойчивый фокус, если d>0, то точка - неустойчивый фокус.
Исследуем точку