Дипломная работа: Кручение стержней

§1.2 Кручение стержней прямоугольного сечения

Пусть поперечное сечение стержня представляет собой прямоугольник с центром в начале координат и со сторонами 2a и 2b, направленными параллельно координатным осям, как показано на рис.7. Пользуемся полученными ранее уравнениями: для всей прямоугольной области

рис.7

(6)

и по контору

(7)

На контурных линиях AB и CD, где x=a, будет l=1 и m=0 , а на линиях BC и AD имеем l=0 и m=1 . Условие на контуре (7) можно переписать в следующем виде:

(31)

Этим условиям можно придать более удобную форму, вводя новую функцию так, что

. (32)

Легко показать, что для новой функции основное уравнение по всей прямоугольной области будет иметь вид:

; (33)

условия на контуре будут следующими:

при (34)

при (35)

Примем решение уравнения (33) в виде бесконечного ряда

(36)

каждый член, которого удовлетворяет дифференциальному уравнению; здесь Xn(x) и Yn(y) – функции соответственно только x и y. Очевидно, если решение для нельзя выразить в форме ряда (36), то мы не сможем найти решение для функции Xn и Yn , удовлетворяющее граничным условиям.

Подставляя Xn(x), Yn(y) в уравнение (33) и обозначая производные штрихами, находим

Или

Так как левая часть полученного уравнения является функцией только от x, а правая зависит только от y, то уравнение может быть удовлетворено лишь в том случае, если обе его части равны постоянной величине; обозначим ее через () (постоянную берем со знаком минус, так как иначе граничные условия не будут удовлетворяться). Таким образом, мы получаем два обыкновенных дифференциальных уравнения:

Эти дифференциальные уравнения легко решить с помощью известных методов интегрирования обыкновенных дифференциальных уравнений с постоянными коэффициентами. Решение их будут следующими:

(37)

(38)

Рассмотрим теперь условие на контуре (35). Во-первых, можно установить, что выражение

К-во Просмотров: 716
Бесплатно скачать Дипломная работа: Кручение стержней