Дипломная работа: Кручение стержней
должно иметь одно и то же значение при y=b и y=-b. Это условие может быть выполнено, если производные являются симметричными функциям от y. Во-вторых, при будем иметь
Это условие удовлетворяется, если Xn(x) являются антисимметричными функциями относительно x. Исходя из этих соображений, находим, что c2=c4=0.Условие (34) будет выполнено, если , или
Отсюда находим
.
Поскольку c1 и c2 – произвольные постоянные, функцию можно записать в следующем виде:
(39)
Где
;
постоянные An следует определить таким образом, чтобы удовлетворялось граничное условие (35).
Дифференцируя функцию по y и подставляя из уравнения (35) получаем
; (40)
здесь для упрощения записи введено обозначение:
.
Коэффициенты An можно определить, пользуясь схемой, применяемой при разложении функции в ряд Фурье. Умножим обе части уравнения (40) на и проинтегрируем все члены по x. Учитывая соотношения
получим
при
= a при m=n
и
Вычислив значения интегралов в этом выражении, найдем
или
следовательно, решение будет иметь вид:
(41)
Постоянную кручения J можно определить по формуле (15):