Дипломная работа: Некоторые вопросы геометрии Лобачевского на модели Пуанкаре

В самом деле, т.к имеет место ADB, то одна из точек А или В по отношению к окружности а внутренняя, пусть это точка В. Тогда, если точка С лежит вне окружности а , то имеет место BFC; если точка С лежит внутри окружности а, то имеет место AFC.

Замечание. На следующих рисунках представлена интерпретация отрезка, луча, угла, треугольника в плоскости Лобачевского.


[AB]

[Aa )

(a,b )


ΔАВС

Прежде чем определить отношение „быть конгруэнтными", введём понятие неевклидова движения.

Пусть Л - прямая а задана в виде евклидовой полуокружности.

Симметрией Л - плоскости относительно Л - прямой а назовём инверсию евклидовой полуплоскости относительно евклидовой полуокружности.

Если Л - прямая а задана в виде евклидова луча, то будем иметь симметрию относительно евклидовой прямой.


Неевклидовым движением назовём конечную цепочку симметрий Л - плоскости относительно Л - прямых.

Будем говорить, что [AB] [CD], если существует неевклидово движение : (A) =C,

(B) =D.

если существует неевклидово

движение :

(а) =с,

(b) =d.

Проверим выполнимость аксиом конгруэнтности.

Пусть дан Л - отрезок uv и Л - луч Аа . Докажем, что

1) на [Aa ) существует Л - точка В такая, что [AB] [uv ] ;

К-во Просмотров: 634
Бесплатно скачать Дипломная работа: Некоторые вопросы геометрии Лобачевского на модели Пуанкаре