Дипломная работа: Порушення основних припущень лінійного регресійного аналізу
Зауваження 2. Сума всіх залишків дорівнює нулю, дійсно,
в кожній точці.
1.3 Точність оцінки регресії
Тепер розглянемо питання про те, яка точність може бути приписана лінії регресії, коефіцієнти якої були оцінені. Розглянемо таку тотожність:
(1.3.1)
Розглянемо доданок
Підставляємо останнє в (1.3.1):
Звідки
(1.3.2)
Означення 1.3.1. Величина – це відхилення -го спостереження від загального середнього, тому суму називають сумою квадратів відхилень відносно середнього значення.
Означення 1.3.2. Величина – це відхилення -го спостереження від його передбаченого значення, тому суму називають сумою квадратів відхилень відносно регресії.
Означення 1.3.3. Величина – це відхилення -го передбаченого значення від загального середнього, тому суму називають сумою квадратів, обумовленою регресією.
Тоді (1.3.2) можна переписати в еквівалентній формі
сума квадратів сума квадратів сума квадратів
= +
відносно обумовлена відносно (1.3.3)
середнього регресією регресії
З останнього випливає, що розсіювання відносно можна приписати у деякій мірі тому факту, що не всі спостереження знаходяться на лінії регресії.
Якщо це було б не так, то відносно регресії дорівнювала б нулю
З цих міркувань зрозуміло, що придатність лінії регресії з метою прогнозування залежить від того, яка частина суму квадратів відносно середнього приходиться на суму квадратів, обумовлену регресією, і яка на суму квадратів відносно регресії.
Задовільним вважається випадок, коли сума квадратів, обумовлена регресією, буде набагато більша, ніж сума квадратів відносно регресії.
Кожна сума квадратів пов’язана з числом, яке називають її ступенем вільності.
Число ступенів вільності – це число незалежних елементів, які складаються з незалежних чисел , необхідних для утворення даної суми квадратів.
Розглянемо суму квадратів відхилень відносно середнього значення .
Серед величин незалежними є тільки величина, оскільки останній елемент знаходиться як лінійна комбінація інших