Дипломная работа: Регресійний аналіз інтервальних даних
- помилки спостережень некорельовані, тобто .
Тоді, як відомо, оцінки МНК є найкращими лінійними оцінками, тобто спроможними і незміщеними оцінками, які являють собою лінійні функції результатів спостережень і мають мінімальні дисперсії серед безлічі всіх лінійних незміщених оцінок. Далі саме цей найбільше практично важливий окремий випадок розглянемо більш докладно.
Запишемо істині дані в наступній формі:
де R - індекс, що вказує на те, що значення істинне. Істині і обмірювані дані пов’язані таким чином:
де
Припустимо, що похибки виміру відповідають граничним умовам
(3.1.3)
Нехай безліч W можливих значень входить в Z - область визначення функції f (X,Y). Розглянемо - оцінку МНК, розраховану за істинним значенням факторів і відгуку, і - оцінку МНК, знайдену за відхиленими похибкам даних.
Тоді
Введемо поняття нотни.
Означення : Величину максимально можливого (по абсолютній величині) відхилення, викликаного похибками спостережень , відомого статистику значення f(y) від істинного значення f(x), тобто
Nf(x) = sup | f(y) - f(x) | ,
де супремум береться по безлічі можливих значень вектора похибки , будемо називатинотною .
Якщо функція f має частинні похідні другого порядку, а обмеження на похибку мають вигляд
(3.1.4)
причому мало, то збільшення функції f з точністю до нескінченно малих більш високого порядку описується головним лінійним членом, тобто
Щоб одержати асимптотичний (при ) вираз для нотни, досить знайти максимум і мінімум лінійної функції (головного лінійного члена) на кубі, заданому нерівностями (4.1.4). Легко бачити, що максимум досягається, якщо покласти
а мінімум, що відрізняється від максимуму тільки знаком, досягається при . Отже, нотна з точністю до нескінченно малих більше високого
порядку має вигляд
(3.1.5)
Цей вираз назвемо асимптотичною нотною .
Покладемо:
Будемо називати n(1) нижньою нотною , а n(2) верхньою нотною .