Дипломная работа: Сингулярные интегралы

И для этих n окажется , что и требовалось доказать.

Эта теорема относится к представлению суммируемой функции в точках непрерывности, но суммируемая функция, вообще говоря, не имеет ни одной точки непрерывности, что понижает интерес этой теоремы.

Больший интерес представляет вопрос о представлении суммируемой функции в тех точках, где эта функция служит производной своего неопределенного интеграла, или в точках Лебега, так как и те и другие точки заполняют почти весь сегмент задания функции. Перейдем к рассмотрению этого вопроса.

Лемма (И. П. Натансон). Пусть на сегменте [ a , b ] дана суммируемая функция f (t ), обладающая тем свойством, что

. (1)

Какова бы ни была неотрицательная убывающая функция g (t ), заданная и суммируемая на [ a , b ], интеграл

(2)

существует (может быть как несобственный при t = a ) и справедливо неравенство

. (3)

В пояснение условий леммы заметим, что не исключается случай, когда . Если же , то функция g (t ) ограничена, и интеграл (2) существует как обычный интеграл Лебега.

Переходя к доказательству леммы, заметим, что не ограничивая общности, можно принять, что g (b )= 0. Действительно, если бы это не было так, то можно было ввести вместо g (t ) функцию g * (t ), определив ее равенствами

g (t ), если ,

g * (t )=

0, если t=b .

Доказав теорему для g * (t ), мы затем смогли бы всюду заменить g * (t ) на g (t ), т. к. такая замена не отражается на величине интересующих нас интегралов. Итак, считаем, что g (b )=0 .

Пусть a < α < b . На сегменте [ α, b ] функция g (t ) ограничена, и интеграл

(4)

заведомо существует. Если положить , то интеграл (4) можно записать в форме интеграла Стилтьеса

,

откуда, после интегрирования по частям, находим

.

Но, в силу (1), мы имеем, что для любого h из интервала [ 0, t -a ] выполняется неравенство и следовательно

, (5)

а так как g (t ) убывает, то

. (6)

Значит . С другой стороны, функция g ( t ) возрастает. Отсюда и из (5) следует, что

.

Преобразуем стоящий справа интеграл по формуле интегрирования по частям:

.

К-во Просмотров: 505
Бесплатно скачать Дипломная работа: Сингулярные интегралы