Изложение: Основные понятия математического анализа
- - через производную.
- - через дифференциал.
В этих уравнениях в произведениях стоят функции, каждая из которых зависит от одной переменной (х или у). Т.е. уравнение будет уравнением с разделяющимися переменными, если его можно преобразовать так, чтобы в одной его части была только одна переменная, а в другой – только другая.
Замечание. При решении дифференциальное уравнение ответу можно придать различную форму в зависимости от того, как записана произвольная постоянная С.
Решение.
-
; -интегрируем и получаем решение.
-
;
Однородные дифференциальные уравнения первого порядка
Функция f(x,y) называется однородной функцией n–го измерения, если при любом выполняется условие: .
Дифференциальное уравнение y’=f(x,y) есть однородное, если функция f(x,y) является однородной функцией нулевого измерения.
Дифференциальное уравнение P(x,y)dx+Q(x,y)dy=0 однородное, если P(x,y) и Q(x,y) являются однородными функциями одного и того же измерения.
P(x,y)dx=-Q(x,y)dy;
Однородное уравнение всегда можно привести к виду и с помощью замены однородное уравнение всегда приводится к уравнению с разделяющимися переменными (; y=xt; y’=t+xt’).
Линейные дифференциальные уравнения
ЛДУ - уравнения вида y’+P(x)y=Q(x)– первого порядка относительно у и у’.
Для решения ЛДУ применяем замену: y=UV, тогда y’=U’V+UV’
U’V+UV’+P(x)UV=Q(x)
V(U’+P(x)U)+UV’=Q(x)
Далее U’+P(x)U=0, получаем два уровнения с разделяющимися переменными:
1 ). U’+P(x)U=0 находим U. 2 ). UV’=Q(x) находим V. . С ставится только при вычислении второго уравнения.
Замечание . Выражение, стоящее в скобках, можно прировнять к нулю, т.к. одну из функций можно взять произвольной, другую – определяем на основании ЛДУ.
Уравнения Бернулли
УБ - дифференциальные уравнения вида y’+P(x)y=Q(x)*yn , где
- т.к. при этих значениях уравнение будет линейным.
УБ решаются так же, как и линейные.
Дифференциальные уравнения второго порядка
Дифференциальные уравнения второго порядка в общем виде записываются: F(x,y,y’,y’’)=0