Книга: Вивчення диференціального числення функцій однієї та багатьох змінних в умовах модульно-рейтингової
Множина значень та — проміжок .
Функції , , — непарні, їх графіки симетричні відносно початку координат, — парна, її графік симетричний відносно .
Функції періодичні. Найменший період синуса та косинуса , та — .
6. Обернені тригонометричні функції
Тригонометричні функції в інтервалі монотонності мають обернені:
— обернена до на відрізку ;
— обернена до на відрізку ;
— обернена до на відрізку ;
— обернена до на відрізку .
7. Перетворення графіків функцій
При побудові графіків функцій часто використовують дефор-мації та паралельне перенесення вздовж осі та .
Треба знати, що:
1) графік функції — дзеркальне відображення графіка відносно осі ;
2) графік функції — дзеркальне відображення графіка відносно осі ;
3) графік функції , де — паралельне перенесення графіка на а одиниць масштабу вздовж осі ;
4) графік функції, де — паралельне перенесення графіка на а одиниць масштабу вздовж осі ;
5) графік функції — стиснення в разів , або розтягнення в разів графіка вздовж осі ;
6) графік функції — розтягнення в разів , або стиснення в разів, графіка вздовж осі ;
7) графік функції — дзеркальне відображення від осі від’ємної частини (під віссю ) графіка функції, додатна частина графіка залишається на місці.
8) графік функції — дзеркальне відображення від осі правої частини (з додатної півплощини) графіка в ліву півплощину, додатна частина графіка залишається на місці.
Аналогічно визначаються нескінченно малі й нескінченно великі величини при .
Нескінченно великі величини знаходяться в тісному зв’язку з нескінченно малими: якщо при даному граничному переході функція є нескінченно великою, то функція при цьому самому граничному переході буде нескінченно малою й навпаки.
Властивості нескінченно малих
1. Функцію можна подати у вигляді , де – стале число; — нескінченно мала при , тоді і тільки тоді, коли .
2. Якщо , то .
3. Алгебраїчна сума довільного скінченого числа нескінченно малих функцій є функція нескінченно мала (у самому граничному переході).
4. Добуток нескінченно малої на обмежену функцію є величина нескінченно мала.
5. Добуток скінченого числа нескінченно малих є величина нескінченно мала.
6. Добуток нескінченно малої на постійну є величина нескінченно мала.