Контрольная работа: Высшая математика Матрица
Ответ : х1 = 2 , х2 = 3 , х3 = - 2 , х4 = -1.
7. Дана система линейных уравнений
3х1 + х2 - х3 - х4 = 2,
9х1 + х2 - 2х3 - х4 = 7,
х1 - х2 - х4 = -1,
х1 + х2 - х3 -3х4 = -2.
Докажите ,что система совместна . Найдите её общее решение . (392.БЛ). Найдите частное решение , если х4 = 1 .
Доказательство :
Система линейных уравнений совместна тогда и только тогда , когда ранг основной матрицы
системы равен рангу расширенной матрицы .
Составим расширенную матрицу :
3 1 -1 -1 2 0 -2 2 8 8 0 0 1 6 7
А = 9 1 -2 -1 7 → 0 -8 7 26 25 → 0 0 3 18 21 =0
1 -1 0 -1 -1 0 -2 1 2 1 0 -2 1 2 1
1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2
Первая и вторая строка пропорциональны следовательно А = 0. Поэтому ранг матрицы и расширенной матрицы равны 3 поэтому система является совместной .
Решим систему методом Гаусса :
запишем последнее уравнение на первое место :
х1 + х2 - х3 -3х4 = -2
3х1 + х2 - х3 - х4 = 2
9х1 + х2 - 2х3 - х4 = 7
х1 - х2 - х4 = -1
1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2
С = 3 1 -1 -1 2 → 0 2 -2 -8 -8 → 0 2 -2 -8 -8 →
9 1 -2 -1 7 0 8 -7 -26 -25 0 0 -1 -6 -7
1 -1 0 -1 -1 0 2 -1 -2 -1 0 0 -1 -6 -7
х1 + х2 - х3 -3х4 = -2
→ 2х2 - 2х3 -8х4 = -8
- х3 -6х4 = -7.