Контрольная работа: Высшая математика Матрица
2) х2 - х3 -4х4 = -4
х2 = х3 + 4х4 - 4
х2 = 7 - 6х4 + 4х4 - 4
х2 = 3 - 2х4
3) х1 = - х2 + х3 + 3х4 - 2
х1 = - 3+ 2х4 + 7 - 6х4 + 3х4 – 2
х1 = 2-х4 .
Получаем общее решение системы :
х1 = 2-х4
х2 = 3 - 2х4
х3 = 7 - 6х4.
Найдём частное решение , если х4 = 1 тогда
х1 = 2– 1 = 1;
х2 = 3 – 2*1 = 1;
х3 = 7 – 6*1 =1.
Ответ : (1;1;1;1) – частное решение .
8. Дана система линейных однородных уравнений
2х1 +3х2 - х3 - х4 + х5 = 0,
3х1 - 2х2 - 3х3 -3х5 = 0,
х1 - 3х2 + 2х3 -5х4 -2х5 = 0.
Докажите , что система имеет нетривиальное решение . Найдите общее решение системы . Найдите какую-нибудь фундаментальную систему решений Доказательство :
Система имеет нетривиальное решение тогда и только тогда , когда ранг её матрицы меньше числа неизвестных .В этом случае ранг матрицы не больше трёх , а переменных в системе пять .
Решим систему методом Гаусса .
Запишем матрицу системы :
2 3 -1 -1 1 1 -3 2 -5 -2
А = 3 -2 3 0 -3 → 0 9 -5 9 5 │*7 →
1 -3 2 -5 -2 0 7 -3 15 3 │*(-9)
1 -3 2 -5 -2
→ 0 9 -5 9 5