Контрольная работа: Высшая математика Матрица
х1 -3х2 + 2х3 - 5х4 -2х5 = 0
9х2 - 5х3 + 9х4 +5х5 = 0
-8х3 -72х4 +8х5 = 0
1) 8х3 = -72х4 + 8х5
х3 = - 9х4 + х5
2) 9х2 + 45х4 - 5х5 + 9х4 +5х5 = 0
9х2 + 36х4 = 0
х2 = - 4х4
3) х1 +12х4 - 18х4 + 2х5 - 5х4 -2х5 = 0
х1 - 11х4 = 0
х1 =11х4
Общее решение системы :
х1 =11х4
х2 = - 4х4
х3 = - 9х4 + х5
Найдём фундаментальную систему решений , положив х4 = 1 , х5 = 0.
х1 =11*1 = 11,
х2 = - 4*1 = -4,
х3 = - 9*1 + 0 = -9.
Пусть х4 = 0, х5 = 1.
х1 =11*0 = 0,
х2 = - 4*0 = 0,
х3 = - 9*0 + 1 = 1.
Ответ : (11;-4;-9;1;0)
(0; 0; 1; 0; 1).
9 (3СА). Найдите площадь параллелограмма , построенного на векторах а = 2р + 3r, b = p –2r , | p | = √2 , | r | = 3, (p,^r) = 45° .
Решение :
S =| [а , b] | = | [2р + 3r , p –2r] | = | 2[p , p] - 4[p, r ] + 3[r , p] -6[r , r] |
[p , p] = 0 , [r , r] = 0 , [r , p] = - [p, r ] .