Курсовая работа: Беселеві функції

1. Беселеві функції з будь-яким індексом

Рівняння Лапласа в циліндричних координатах

Щоб пояснити походження Беселевих функцій, розглянемо рівняння Лапласа в просторі:

. (1)

Якщо перейти до циліндричних координат по формулах:

, , ,

те рівняння (1) прикмет наступний вид:

. (2)

:

,

Нехай є рішення згаданого виду. Підставляючи його в (2), одержимо:

,

звідки (після ділення на )

.


Записавши це у вигляді:

,

знайдемо, що ліва частина не залежить від , права не залежить від , ; отже, загальна величина цих виражень є деяка постійна . Звідси:

; ;

; ;

.

В останній рівності ліва частина не залежить від , права не залежить від ; отже, загальна величина цих виражень є деяка постійна . Звідси:

, ;

, .

Таким чином, , , повинні задовольняти лінійним диференціальним рівнянням другого порядку:

,

(3)

, ,


з яких друге й третє є найпростіші лінійні рівняння з постійними коефіцієнтами, а перше є лінійним рівнянням зі змінними коефіцієнтами нового виду.

Обернено, якщо , , задовольняють рівнянням (3), тобто рішення рівняння (2). Справді, підставляючи в ліву частину (2) і ділячи потім на , одержимо:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 482
Бесплатно скачать Курсовая работа: Беселеві функції