Курсовая работа: Беселеві функції

отже,

.

Але , тому

. (15)

За допомогою (10') знаходимо:


,

а з огляду на (14)

,

отже, при цілому позитивному

. (14`)

За допомогою (11') знаходимо:

,

але в силу (15)

,

і, отже, при цілому позитивному

. (15`)


4. Інтегральне подання Беселевих функцій із цілим індексом

Виробляюча функція системи функцій

Розглянемо систему функцій (з будь-якою загальною областю визначення), пронумерованих за допомогою всіх цілих чисел:

Складемо ряд

,

де – комплексна змінна. Припустимо, що при кожному (приналежному області визначення розглянутих функцій) цей ряд має кільце збіжності, що містить усередині себе одиничну окружність . Зокрема, це кільце може являти собою повну площину комплексної змінної без крапок 0 і?.

Функція

(16)

(де x лежить в області визначення функцій системи , – усередині кільця збіжності, що відповідає розглянутому значенню ) називається виробляючою функцією системи .

Обернено, нехай задана функція , де пробігає деяку множину, перебуває усередині деякого кільця, що залежить від , із центром 0 і утримуючого усередині себе одиничну окружність. Тоді, якщо при кожному аналітичне відносно усередині відповідного кільця, тобто виробляюча функція деякої системи функцій. Справді, розклавши при кожному функцію в ряд Лорана по ступенях :

,

знайдемо, що система коефіцієнтів цього ряду буде шуканою системою .

К-во Просмотров: 490
Бесплатно скачать Курсовая работа: Беселеві функції