Курсовая работа: Беселеві функції

називається бесселевой функцією першого роду з індексом . Вона є одним з рішень рівняння Беселя (4). У випадку цілого ненегативного індексу одержимо:

, (5`)

і, зокрема,

. (5``)

Загальне рішення рівняння Беселя

У випадку нецілого індексу функції і є рішеннями рівняння (4). Ці рішення лінійно незалежні, тому що початкові члени рядів, що зображують ці функції, мають коефіцієнти, відмінні від нуля, і містять різні ступені . Таким чином, у випадку нецілого індексу загальне рішення рівняння Беселя є:

. (6)

Якщо (ціле негативне число), то функція, обумовлена формулою (5) (з огляду на, що дорівнює нулю для …), приймає вид:

(5```)

або, після заміни індексу підсумовування на ,


, (7)

звідки видно, що задовольняє разом з рівнянню Беселя

.

Але формула (6) у випадку цілого вже не дає загального рішення рівняння (4).

Думаючи

( – не ціле) (8)

і доповнюючи це визначення для (ціле число) формулою:

, (8`)

одержимо функцію , що задовольняє рівнянню Беселя (4) і у всіх випадках лінійно незалежну від (у випадку , де – ціле). Функція називається беселевою функцією другого роду з індексом . Загальне рішення рівняння Беселя (4) можна записати у всіх випадках у вигляді:

. (9)

2. Формули приведення для Беселевих функцій

Маємо:


; ;

, ;

.

Отже,

. (10)

Таким чином, операція (що складається в диференціюванні з наступним множенням на ), застосована до , підвищує в цьому вираженні індекс на одиницю й міняє знак. Застосовуючи цю операцію раз, де – будь-яке натуральне число, одержуємо:

. (10`)

К-во Просмотров: 491
Бесплатно скачать Курсовая работа: Беселеві функції