Курсовая работа: Численные методы анализа

+0,5994+0,7416+0,9063] = 0,1731

Ошибка вычисления:

О = |0,173–0,1731| = 0,0001 = 0,001 – да.

4.5 Вычислим интеграл методом трапеций

Iпп = h·[ + f(x1 ) + f(x2 ) + … + f(xn-1 )] = ·[+0,0985+0,1989+0,3033+

+0,4142+0,5345+0,6682+0,8207] = 0,1737

Ошибка вычисления:

О = |0,173–0,1737| = 0,0007 = 0,001 – да.

4.6 Вычислим интеграл методом парабол

Iпп = ·[f(x0 ) + f(xn ) + 4·(f(x1 ) + f(x3 ) + … + f(xn -1 )) + 2·(f(x2 ) + f(x4 ) + … + f(xn -2 ))] =·[0 +1 + 4·(0,0985+0,3033+0,5345+0,8207) + 2·(0,1989+0,4142+0,6682)] = 0,1733

Ошибка вычисления:

О = |0,173–0,1733| = 0,0003 = 0,001 – да.

5. Численные методы решений обыкновенных дифференциальных уравнений первого порядка

5.1 Исходные данные

Уравнение Начальные условия Интервал Шаг
y(0) = 2,2 [0; 0,25] 0,05

Решим дифференциальное уравнение первого порядка в интервале [0; 0,25] с шагом 0,05 и начальными условиями y(0) = 2,2

5.2 Метод Эйлера

Запишем итерационные формулы метода Эйлера.

Вычислим значения функций при i = 0 :

Вычислим значения функций при i = 1 :


Вычислим значения функций при i =2 :

Вычислим значения функций при i = 3 :

К-во Просмотров: 584
Бесплатно скачать Курсовая работа: Численные методы анализа