Курсовая работа: Численные методы интегрирования и оптимизации сложных систем

Рис.9. Графики выходного сигнала , полученного в аналитическом виде, выходного сигнала , полученного численным решением ДУ и ошибки решения при шаге

2.9 Анализа заданной системы с использованием спектрального метода (базис: Чебышева 2 рода)

Спектральная форма представления сигналов и временных динамических характеристик систем и объектов основана на их разложении в заданной системе ортогональных функций

Если некоторый сигнал принадлежит пространству , т.е. для него справедливо положение

,

То он может быть представлен в виде ряда Фурье:

(14)

Если ввести векторы

то ряд (14) можно представить следующим образом

(15)

Совокупность коэффициентов Фурье разложения сигнала в ряд (14) называется спектральной характеристикой этого сигнала.

Коэффициенты Фурье определяются по формуле

(16)

Существенным и определяющим отличием спектрального описания дискретных сигналов от спектрального описания непрерывных сигналов на конечных интервалах является возможность их точного представления в виде рядов Фурье с конечным числом членов. Значит, если дискретный сигнал, а данный сигнал имеет место на входе ЭВМ после его аналого-цифрового преобразования (АЦП), задан на конечном множестве точек, например , в виде некоторой числовой последовательности , то его разложение по заданной системе ортогональных функций

определяется соотношением

(17)

Система - это система ортогональных, нормированных функций, удовлетворяющих условию

Коэффициенты Фурье определяются по формуле

(18)

Далее вводим полиномы Чебышева 2-го рода (19):

(19)

2.9.1 Алгоритм построения спектральной характеристики(СХ)

1. Исходные уравнение (20):

(20)

Вычислим ядра и (21):

К-во Просмотров: 474
Бесплатно скачать Курсовая работа: Численные методы интегрирования и оптимизации сложных систем