Курсовая работа: Численные методы
PAx=Pf, (21)
где Р - некоторая матрица перестановок.
Теоретическое обоснование метода Гаусса с выбором главного элемента содержится в следующей теореме.
ТЕОРЕМА 1. Если то существует матрица перестано-
вок Р такая, что матрица РА имеет отличные от нуля угловые ми-
норы.
Доказательство в п.4.
СЛЕДСТВИЕ. Если то существует матрица престана-
вок Р такая, что справедливо разложение
РА=LU, (22)
где L - нижняя треугольная матрица с отличными от нуля диагональными элементами и U- верхняя треугольная матрица с единичной главной диагональю. В этом случае для решения системы (1) можно применять метод Гаусса с выбором главного элемента.
4. Доказательство теоремы 1. Докажем теорему индукцией по числу m -порядку матрицы А .
Пусть m=2 , т.е.
Если то утверждение теоремы выполняется при Р=Е , где Е - единичная матрица второго порядка. Если , то , т.к. При этом у матрицы
все угловые миноры отличны от нуля.
Пусть утверждение теоремы верно для любых квадратных матриц порядка m -1 . Покажем, что оно верно и .для матриц порядка m. Ра зобьем матрицу А порядка m на блоки
где
Достаточно рассмотреть два случая :и . В первом случае по предположению индукции существует матрица перестановок порядка m-1 такая, что имеет отличные от нуля угловые миноры. Тогда для матрицы перестановок
имеем
причем . Тем самым все угловые миноры матрицы РА отличны от нуля.
Рассмотрим второй случай, когда . Т.к. , найдется хотя бы один отличный от нуля минор порядка m-1 матрицы А, полученный вычеркиванием последнего столбца и какой-либо строки. Пусть, например,