Курсовая работа: Численные методы
Обратный ход осуществляется путем решения систем уравнений
с треугольными матрицами L è U.
При осуществлении обратного хода можно сократить число действий, принимая во внимание специальный вид правых частей системы (4).
Запишем подробнее первые j-1 уравнений системы (4):
Учитывая невырожденность матрицы L ( т.е.
отсюда получаем
При этом оставшиеся уравнения системы (4) имеют вид
Отсюда последовательно находятся неизвестные по формулам:
Можно показать, что общее число действий умножения и деления, необходимое для обращения матрицы указанным способом, порядка . Тем самым обращение матрицы требует не намного больше времени, чем решение системы уравнений.
МЕТОД ПРОГОНКИ.
Система уравнений для определения коэффициентов сплайна представляет собой частный случай систем линейных алгебраических уравнений
с трехдиагональной матрицей , т.е. с матрицей, все элементы которой,не лежащие на главной и двух побочных диагоналях, равны нулю при та
В общем случае системы линейных алгебраических уравнений с трехдиагональной матрицей имеют вид
Для численного решения систем трехдиагональными матрицами применяется метод прогонки , который представляет собой вариант метода последовательного исключения неизвестных.
Т.е. матрицу А можно записать
(1) Идея метода прогонки состоит в следующем. Решение системы (1) ищется в виде
где -неизвестные коэффициенты, которые последовательно находятся от до (прямая прогонка ), а затем последовательно вычисляются (обратная прогонка) .
Выведем формулы для вычисления Из (3) можно получить
Подставляя имеющиеся выражения для в уравнение (1),приходим при к уравнению Последнее уравнение будет выполнено если коэффициенты выбрать такими, чтобы выражения в квадратных скобках обращались в нуль.
А именно, достаточно положить Для отыскания всех достаточно задать
Эти начальные значения находим из требования эквивалентности условия (3) при т.е. условия , первому из уравнений (2).
Таким образом, получаем