Курсовая работа: Діафантові рівняння

Помноживши першу з цих рівностей на , а другу на і віднявши їх, отримаємо:

Пара , буде розв’язком рівняння (6) тоді і тільки тоді, коли , тобто при парних значеннях 𝑘𝑛. Найменшими додатними значеннями , які задовольняють рівняння Ферма (6) є:

, якщо 𝑘 парне.

, якщо 𝑘 непарне.

Приклад. 1) знайти найменші цілі додатні значення 𝑥, 𝑦, які задовольняють рівняння

Розкладаючи в ланцюговий дріб, отримуємо:

У даному прикладі 𝑘 = 6 – парне число, тому , - шукані значення 𝑥 та 𝑦. Обчислюючи , знаходимо , .

2) знайти найменші цілі, додатні значення 𝑥, 𝑦, які задовольняють рівняння

Розкладаючи в ланцюговий дріб отримуємо:

У цьому прикладі 𝑘=5, найменше парне 𝑘𝑛 дорівнює 10, тому шукані значення , . Обраховуючи, отримуємо , .

Аналогічно до рівняння (6) можна розв’язати рівняння

. (10)

Теореми доведені для рівняння (6) справедливі і для рівняння (10), але замість умови парності 𝑘𝑛 , треба поставити умову 𝑘𝑛 не ділиться на 2. Таким чином, при парних значеннях 𝑘 діофантове рівняння (10) не має розв’язків.

2.3 Невизначене рівняння третього степеня

Сума кубів трьох цілих чисел може бути кубом четвертого числа. Наприклад,

Це означає, що куб ребро якого дорівнює 6 см, рівновеликий сумі трьох кубів, ребра яких дорівнюють 3см, 4см, 5см.

Спробуємо знайти таке ж відношення, тобто поставимо задачу: знайти розв’язки рівняння . Зручніше позначити невідоме 𝑢 через . Тоді рівняння буде мати більш простий вигляд

.

Розглянемо прийом, що дозволяє знайти безліч розв’язків цього рівняння в цілих (додатних та від’ємних)числах. Нехай 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 – дві четвірки чисел, що задовольняють рівняння. Додамо до чисел першої четвірки числа другої четвірки, помноженої на деяке число 𝑘, і спробуємо підібрати число 𝑘 так, щоб отримані числа

також задовольняють наше рівняння. Інакше кажучи, підберемо 𝑘 таким чином, щоб виконувалась рівність

.

Розкривши дужки і знаючи, що 𝑎, 𝑏, 𝑐, 𝑑 та 𝛼, 𝛽, 𝛾, 𝛿 задовольняють рівняння, тобто мають місце рівності

, ,

ми отримаємо:

К-во Просмотров: 516
Бесплатно скачать Курсовая работа: Діафантові рівняння