Курсовая работа: Интегралы, зависящие от параметра
Теорема 2.6 (критерий Коши) Если функция f: (a; b]→R, неограниченна в окрестности точки а, но интегрируема по Риману на [а + δ, b]
при любом О<δ<δ-a, то сходится тогда и только тогда, когда такое, что а’, а” : а <а’, а” < а + δ. Будет выполняться условие
Это утверждение доказывается так же, как и аналогичное утверждение
для несобственных интегралов первого рода. Так же вводится понятие
абсолютной и условной сходимости и устанавливается соотношение между ними. Так же формулируется и доказывается признак сходимости Вейерштрасса.
Интегралы в смысле главного значения
Определение 2. 5 Пусть функция f: R→ R, интегрируема по Риману на любом конечном отрезке, но несобственный интеграл
не существует. Тогда, если существует , мо он называется интегралом в смысле главного значения и обозначается символом
(p.)
Определение 2.6 Пусть функция f: [а;b ]\{с} → R, а < с < b , неограниченна в окрестности точки с, интегрируема по Риману на отрезках
[а; с — δ] и [с + δ; b] при любом δ> 0, но не существует. Тогда, если существует
то он называется интегралом в смысле главного значения н обозначаемся символом
(p.)
Пример 2.6 Рассмотрим
Решение. Это — расходящийся интеграл второго рода, поскольку показатель степени p =1. Однако
Следовательно, рассматриваемый интеграл существует в смысле главного значения и
(p.) ■
Пример 2.7 Рассмотрим
Решение. Этот интеграл расходится, так как подынтегральная функция f(х)~. Но
Следовательно, этот интеграл существует в смысле главного значения и (p.) ■
2.2 Собственные интегралы, зависящие от параметра
Пусть f: [а; b] х Y → R, где [а; b] R, Y- любое множество,
а [а; b] х Y = {(х, у): х [а; b], уY}. Предположим, что функция f интегрируема по Риману на отрезке [а; b].
Определение 2.7 Функцию
(2.1)
определённую на множестве Y при описанных выше условиях, будем
называть собственным интегралом, зависящим от параметра.
Изучим свойства этого интеграла, ограничившись простейшим случаем:
У = [с; d] R, и введя обозначение
П [а b] х [с; d] = {(х, у): х [а; b], у [с; d]}.
Теорема 2.7 Пусть функция f непрерывна на прямоугольнике П. Тогда
функция I(у) непрерывна на отрезке [а; b].
Доказательство. Функция непрерывна на множестве, если она непрерывна в каждой точке множества. Возьмём, поэтому, любое [с; d] и
любое > 0 и покажем, что найдётся > 0 такое, что если у [с; d] и
, то будет выполняться неравенство