Курсовая работа: Интегралы, зависящие от параметра
Возьмём и применим к интегралу вторую теорему о среднем значении (только на этот раз в общем виде, поскольку неизвестен знак g(х, у)), согласно которой найдётся А = А(у), А [А’, А”], такое, что
(2.18)
Оценим (2.18) с помощью (2.16) и (2.17).
для любого у из множества Y.
Используя критерий Коши, получаем требуемое утверждение. ■
Теорема 2.15 (Абель) Пусть функции f, g : [а; +∞) х Y→R и
интегрируемы по Риману на [а; А] при любых А > а и у . Тогда
сходимся равномерно на Y, если выполнены следующие два условия:
1) сходимся равномерно на множестве Y;
2)функция g(х, у) монотонна по х при каждом у и равномерно
по у ограничена, то есть, существует постоянная М такая, что
для всех х [а; +∞) и у .
Пример 2.12 Рассмотрим , где b> 0 постоянная, а параметр а удовлетворяет условию
Решение. Положим f(x,a)= sinax, g(x,a) Тогда
при х → +∞, и это условие (ввиду независимости функции g от а) вы-
полнено равномерно по а.
Так как оба условия признака Дирихле выполнены, то рассматриваемый интеграл сходится равномерно в указанной области. ■
Пример 2.13 Рассмотрим (a≥0)
Решение. Положим f(x, а) = , g(х, а) = . Так как
сходится равномерно по а (ввиду его отсутствия) по признаку Дирихле,
а функция , очевидно, монотонна по х и при х ≥ 0, у ≥0 ограничена,
то рассматриваемый интеграл сходится равномерно в указанной области
по признаку Абеля.■
2.4 Свойства несобственных интегралов, зависящих
от параметра
Изучим свойства несобственных интегралов первого рода, зависящих
от параметра, ограничившись простейшим случаем: множество Y есть
отрезок [с; d] вещественной оси. Введём обозначение
и докажем предварительно следующую лемму.
Лемма 2.1 Если интеграл (2.13) сходится равномерно на множестве Y
то последовательность функций
,() (2.19)