Курсовая работа: Интегралы, зависящие от параметра
Первый из интегралов — интеграл с постоянными пределами вида
2.1, его непрерывность доказана в теореме 2.7. Поэтому
Займемся вторым интегралом. Функция f(x, у) непрерывна на П, следовательно, ограничена. Поэтому существует постоянная М такая, что
П. Но тогда
А так как функция b(у) непрерывна на [с; d], то при
, поэтому
Совершенно аналогично доказывается, что и
Таким образом,
что и требовалось доказать. ■
Теорема 2.11 Пусть функция f непрерывна на прямоугольнике П и
имеет на нём непрерывную частную производную , а функции а(у) и
b(у) дифференцируемы на отрезке [с; d]. Тогда функция I(у), определяемая равенством (2.6), дифференцируема на отрезке [с; d] и её производная может быть вычислена по формуле
(2.8)
Доказательство. Поскольку дифференцируемость на промежутке есть
дифференцируемость в каждой точке промежутка, то возьмём на отрезке [с; d] и покажем, что I(у) дифференцируема в точке , и что представляется в виде правой части формулы (2.8). Для этого воспользуемся представлением I(у) в виде (2.7) и покажем, что каждое слагаемое
правой части (2.7) дифференцируемо и вычислим его производную.
Первый из интегралов в правой части (2.7) имеет постоянные пределы
интегрирования. Его дифференцируемость установлена в теореме 2.9.
Поэтому
(2.9)
Теперь докажем дифференцируемость и вычислим производную второго слагаемого в правой части (2.7). (Отметим, что .)
По определению производной
Так как подынтегральная функция непрерывна (по х), то по свойству
определённого интеграла найдётся с = с(у), , такое, что
. Но тогда
так как первый предел существует по теореме о трёх функциях и в силу непрерывности функции f на прямоугольнике П, а второй — в силу
дифференцируемости функции b(у). Итак,
. (2.10)
Совершенно аналогично доказывается, что третье слагаемое в (2.7)
дифференцируемо и что
. (2.11)
Итак, все три слагаемых в правой части равенства (2.7) дифференцируемы в точке , значит, и функция I(у) дифференцируема в точке и
. (2.12)
Подставив сюда значения производных (формулы (2.9), (2.10), (2.11)),