Курсовая работа: Колебания
(4.11)
называемой диссипативной функцией.
Силы (4.10) должны быть добавлены к правой стороне уравнений Лагранжа
(4.12)
Диссипативная функция имеет сама по себе важный физический смысл — ею определяется интенсивность диссипации энергии в системе. В этом легко убедиться, вычислив производную по времени от механической энергии системы. Имеем:
Поскольку F — квадратичная функция скоростей, то в силу теоремы Эйлера об однородных функциях сумма в правой стороне равенства равна 2 F . Таким образом,
(4.13)
т е. скорость изменения энергии системы дается удвоенной диссипативной функцией. Так как диссипативные процессы приводят к уменьшению энергии, то должно быть всегда F > 0, т. е. квадратичная форма (4.11) существенно положительна.
Уравнения малых колебаний при наличии трения получаются добавлением сил (4.8) в правую сторону уравнений (3.5):
(4.14)
Положив в этих уравнениях
xk = Ak ert ,
получим по сокращении на ert систему линейных алгебраических уравнений для постоянных Ak
(4.15)
Приравняв нулю определитель этой системы, найдем характеристическое уравнение, определяющее значения r :
(4.16)
Это — уравнение степени 2s относительно r . Поскольку все его коэффициенты вещественны, то его корни либо вещественны, либо попарно комплексно сопряжены. При этом вещественные корни непременно отрицательны, а комплексные имеют отрицательную вещественную часть. В противном случае координаты и скорости, а с ними и энергия системы экспоненциально возрастали бы со временем, между тем как наличие диссипативных сил должно приводить к уменьшению энергии.
Вынужденные колебания при наличии трения
Исследование вынужденных колебаний при наличии трения вполне аналогично произведенному в п. 1.2 вынужденные колебания. Мы остановимся здесь подробно на представляющем самостоятельный интерес случае периодической вынуждающей силы.
Прибавив в правой стороне уравнения (4.1) внешнюю силу f cos yt и разделив на т, получим уравнение движения в виде
(5.1)
Решение этого уравнения удобно находить в комплексной форме, для чего пишем в правой части eiγt вместо cos yt :