Курсовая работа: Обработка информации и принятие решения в системах ближней локации

показательное распределение: alpha= 166.5608494

равномерное распределение: a= -0.0292791; b= 0.0412867

Рэлеевское распределение: sigma= 0.0047903

Для фонового сигнала:

Параметры по методу моментов:

нормальное распределение: m= 0.0188599; sigma= 0.0005663

показательное распределение: alpha= 53.0224920

равномерное распределение: a= 0.0178790; b= 0.0198409

Рэлеевское распределение: sigma= 0.0150480

Вывод: из результатов, полученных двумя методами видно, что оценки плотностей распределения вероятностей для равномерного и рэлеевского законов по первому методу отличаются от плотностей распределения вероятностей по второму методу.

Оценки показательных и нормальных законов плотностей распределения вероятностей по обоим методам практически совпадают.

1.4 Построение на одном графике теоретического и практического распределения для формулировки гипотезы

Построим на одном графике теоретическую и эмпирическую плотности распределения вероятности. Эмпирическая плотность распределения – это гистограмма, у которой масштаб по оси ординат изменен таким образом, чтобы площадь под кривой стала равна единице. Для этого все значения в интервалах необходимо разделить на nh , где n – объем выборки, h – ширина интервала при построении гистограммы. Теоретическую плотность распределения вероятности строим по одному из выражений (4), (6), (8), (10), параметры для них уже вычислены. Эмпирическую плотность распределения нарисуем красной линией, а предполагаемую теоретическую – линией одного из цветов: синего, зеленого, сиреневого или черного.

Практическая часть.

[nj, xm]=hist(x, k);% число попаданий и середины интервалов

delta=xm(2) – xm(1);% ширина интервала

clearxfvfvxftft% очистили массивы для f(x)

xfv=[xm-delta/2; xm+delta/2];% абсциссы для эмпирической f(x)

xfv=reshape(xfv, prod(size(xfv)), 1);% преобразовали в столбец

xfv=[xl; xfv(1); xfv; xfv(end); xr];% добавили крайние

fv=nj/(n*delta);% значения эмпирической f(x) в виде 1 строки

fv=[fv; fv];% 2 строки

fv=[0; 0; reshape(fv, prod(size(fv)), 1); 0; 0];% + крайние, 1 столбец

xft=linspace(xl, xr, 1000)';% абсциссы для теоретической f(x)

ft=[normpdf (xft, mx, sx), exppdf (xft, 1/lam),…

unifpdf (xft, a, b), raylpdf (xft, sig)];

col='bgmk';% цвета для построения графиков

figure

plot (xfv, fv, '-r', xft, ft(:, 1), col(1), xft, ft(:, 2), col(2),…

К-во Просмотров: 507
Бесплатно скачать Курсовая работа: Обработка информации и принятие решения в системах ближней локации