Курсовая работа: Применение производной при нахождении предела

Вычисление.

.

Этот предел рассматриваем, как

,

где


, а .

Из теоремы о существовании предела суперпозиции двух функций следует, что . Далее

,

заменяя знаменатель на эквивалентную бесконечно малую получим

=.

Таким образом,

.

Пример 2.

.

Представим функцию в следующем виде.


и вычислим предел

Пример 3. Вычислить предел:

Пример

4.

Пример 5.

При х ® ¥

при ex возрастает быстрее любой степенной функции хк, k>0

ln (x) возрастает медленнее любой степенной функции хк

4. Формула тейлора. вычисление пределов с помощью формулы тейлора

4.1 Многочлен Тейлора. Формула Тейлора с остаточным членом Rn .

К-во Просмотров: 520
Бесплатно скачать Курсовая работа: Применение производной при нахождении предела