Курсовая работа: Решение обратных задач динамики

Действительно, частотные методы расчета и проектирования систем автоматического регулирования и управления основаны на приближении частотных характеристик проектируемой системы к соответствующим характеристикам желаемого вида, т.е. процессы в проектируемой системе должны быть близки к процессам, протекающим в некоторой эталонной системы, отвечающей требованиям технического задания на проектирования.

Расчет параметров систем автоматического регулирования корневыми методами также основан на приближении динамических характеристик проектируемой системы к соответствующим характеристикам некоторой эталонной системы. Мера близости динамических характеристик в таких процедурах расчета определяет соответствие между распределениями корней характеристических уравнений проектируемой и эталонной систем.

В теории автоматического управления широкое развитие получили методы синтеза замкнутых систем, основанные на решении оптимизационных задач с использованием различных функционалов, характеризующих качество процессов управления. Большое число процедур было разработано для параметрической оптимизации систем регулирования по критерию минимума интегральных квадратичных оценок, введенных А.А. Красовским еще в 40-е годы.

По определению интегральными квадратичными оценками рассматриваемой системы являются:

- оценка нулевого порядка,

- оценка первого порядка,

- оценка порядка n ,

где x (t ) – выходная переменная, характеризующая состояние системы - ее производные; n – порядок системы. Величины постоянны и имеют размерность времени.

Для вычисления интегральных квадратичных оценок разработаны различные приемы и способы, которые можно в учебной литературе по теории автоматического регулирования.

Задача формулируется следующим образом. Задана структура динамической системы; некоторые параметры системы являются варьируемыми, а остальные должны оставаться неизменными. Требуется найти такие значения варьируемых параметров, при которых реализуется минимум какой-либо интегральной квадратичной оценки. Сформулированная задача является задачей параметрической оптимизации динамической системы. Найденные в результате ее решения параметры именуются оптимальными, а систему с такими параметрами называют оптимальной по переходному процессу.

Схема решения задачи параметрической оптимизации в аналитической форме такова. Пусть есть те параметры, которые необходимо определить из условия реализации минимума принятой интегральной квадратичной оценки . Выражение для оценки содержит неизвестные параметры . Оптимальные значения параметров определяются из уравнений . Практически параметрическая оптимизация проводится с применением численных методов, так как в аналитическом виде решение может быть получено в простейших случаях. Выражения для оказываются громоздкими, а уравнения для оптимальных параметров нелинейными.

Однако, как показано в работах А.А. Красовского и А.А. Фельдбаума, оптимальность системы по интегральному квадратичному критерию равносильна тому, что ошибка системы как функция времени подчиняется в процессе управления соответствующему дифференциальному уравнению.

Действительно. Пусть состояние системы характеризуется выходной переменной x (t ) и ее производными ). Предполагается, что порядок системы равен n . Пусть в начальный момент

, ,..., (1.1)

Принимается, что собственное движение системы асимптотически устойчиво. Тогда при система стремится к положению равновесия:

(1.14)

Рассмотрим оценку и найдем такую функцию x (t ), которая удовлетворяет граничным условиям (1.1), (1.2) и доставляет минимум интегралу . Обозначим через подынтегральное выражение в . Тогда согласно теории вариационного исчисления необходимое условие экстремума (минимума) интеграла будет иметь вид

(1.3)

Это дифференциальное уравнение называется уравнением Эйлера-Пуассона. С учетом выражения для можно найти

и, кроме того,

Следовательно, уравнение (1.3) будет

(1.4)

Таким образом, экстремаль x (t ), на которой интеграл обращается в минимум, является решением дифференциального уравнения (1.4) порядка 2n . При этом x (t ) должна удовлетворять граничным условиям (1.1) и (1.2). Характеристическое уравнение, отвечающее (1.16), таково:


Оно обладает тем свойством, что его корни попарно симметричны относительно начала координат комплексной плоскости p , т.е. корням , соответствуют корни, . На этом основании решение (1.4) можно записать в виде

(1.5)

где постоянные , должны быть такими, чтобы выполнялись граничные условия.

К-во Просмотров: 485
Бесплатно скачать Курсовая работа: Решение обратных задач динамики