Курсовая работа: Решение обратных задач динамики
(1)
можно найти спектральную характеристику эталонного сигнала на выходе нелинейного элемента. Решая уравнение (1) относительно коэффициентов с использованием метода Гаусса-Ньютона получены следующие числовые значения коэффициентов:
. (2)
График соответствующего сигнала представлен на рисунке 4.
Рис. 4. График сигнала, который необходимо получить на выходе нелинейного элемента
Однако на выходе нелинейного элемента можно получить сигнал, представленный на рисунке 5 (ниже показаны первые пять элементов спектральной характеристики).
Рис. 5. Реальный сигнал на выходе нелинейного элемента
.
Тогда из (1) находим эталонный сигнал на выходе, который может обеспечить данная система (рис. 6). Его спектральная характеристика:
. (3)
Рис. 6. Графики требуемого эталонного сигнала и эталонного сигнала, который можно получить
2. В результате решения предыдущего этапа найдены спектральные характеристики (3) эталонного выходного сигнала, который может обеспечить данная система, и (2) эталонного сигнала, которой необходимо получить на входе нелинейного элемента.
Далее искомый сигнал представим в виде
, (4)
где некоторая система линейно независимых функций.
В результате можно для спектральной характеристики сигнала на входе нелинейного элемента записать следующую зависимость.
, (5)
где – спектральная характеристика -го элемента системы . Поскольку известны спектральные характеристики эталонных сигналов и , то между левой и правой частями выражения (5) будет иметь место невязка
, (6)
зависящая от неизвестных коэффициентов , . Сформировав функционал
, (7)
исходную задачу синтеза входного сигнала можно свести к задаче поиска минимума функционала (7) на множестве допустимых значений коэффициентов , , т.е.
.
При решении задачи в качестве системы функций использовались экспоненциальные функции: . Минимум функционала (7) искался с использование алгоритма Нелдера-Мида (алгоритма безусловной минимизации). В качестве начальных значений искомых коэффициентов были приняты нулевые. При этом значение функционала (7):
.
Были получены следующие оптимальные значения искомых коэффициентов: