Курсовая работа: Решение обратных задач динамики

где коэффициенты , неизвестны и их необходимо определить.

Следовательно входной сигнал будет зависеть от времени и от множества параметров Тогда дифференциальное уравнение (2.2) можно записать в следующей виде

(2.5)

Интегрируя уравнение раз с учетом начальных условий, получим


(2.6)

Воспользовавшись справедливым для любой непрерывной функции тождеством

равенство (2.6) можно переписать в виде

(2.7)

Интегрируя полученное равенство (2.7) по частям и применяя формулы


получим

(2.8)

где

Уравнение (2.8) представляет собой уравнение Вольтера 2-го рода. Преобразуем его к интегральному уравнению Фредгольма 2-го рода на интервале исследования :

(2.9)


где

Таким образом, получены две эквивалентные формы описания системы: дифференциальное уравнение (2.2) с начальными условиями (2.3) и интегральное уравнение (2.9). Функция в выражении (2.9) представляет собой полином, коэффициенты которого зависят от начальных условий (2.3) и от множества искомых параметров настройки системы автоматического управления (регулирования). Перепишем , изменив порядок суммирования

Введем следующие обозначения:


Тогда полином можно записать следующим образом

где - вектор-столбец начальных условий; - вектор-столбец полиномов .

Рассмотрим левую часть уравнения (2.9). Представим функции, входящие в нее, в виде разложений в ряд по ортонормированному базису .

Имеем

К-во Просмотров: 483
Бесплатно скачать Курсовая работа: Решение обратных задач динамики