Курсовая работа: Статистические распределения и их основные характеристики
Воспользуемся укрупнением интервалов для перегруппировки данных.
Таблица 4.
Группы рабочих по проценту выполнения норм выработки | Количество рабочих,% к итогу | |
Завод 1 | Завод 2 | |
До 100 | 5 | 8 |
100-120 | 80 | 40 |
120-150 | 13 | 20 |
150 и выше | 2 | 32 |
ИТОГО | 100 | 100 |
Можно воспользоваться и другой группировкой по проценту выполнения норм выработки, например, выделить такие интервалы:
Группы рабочих | 1 | 2 | 3 | 4 | 5 |
% выполнение нормы выработки | До 100 | 100-110 | 110-120 | 120-140 | 140-160 |
Для такой группировки возникает необходимость расширения ряда распределения рабочих Завода 2.
Если известна относительная плотность распределения, то частости соответствующего интервала можно определить: произведение плотности на величину интервала.
vi =m0 i ´h.
По данным таблицы 3 определяем плотности распределения группы рабочих по проценту выполнение норм выработки для интервалов:
ІІ - го: 100-120 m02 =2,0 (40/20)
ІІІ - го: 120-150 m03 =2/3 (20/30)
IV- го: 150-180 m04 =1/2 (15/30)
Тогда количество рабочих (% к итогу) Завода 2, выполняющих норму на 140‑160% определяются так:
2/3´10+1/2´10=12.
Результаты перегруппировки представлены в таблице 5.
Таблица 5.
Группы рабочих по проценту выполнения норм выработки | Количество рабочих,% к итогу | |
Завод 1 | Завод 2 | |
До 100 | 5 | 8 |
100-110 | 50 | 20 |
110-120 | 30 | 20 |
120-140 | 8 | 13 |
140-160 | 7 | 12 |
160 и выше | - | 27 |
ИТОГО | 100 | 100 |
2. Основные характеристики и графическое изображение вариационного ряда
Для целей анализа и сравнительной характеристики различных рядов распределения применяются обобщающие показатели вариационного ряда. Систему показателей рассмотрим на примере.
Допустим, что по 5 производственным участкам известны данные о распределении 100 рабочих по квалификации (табл.6).
Таблица 6.
Разряд рабочих | Число рабочих участка | ||||
I | II | III | IV | V | |
2 | 20 | - | 10 | 1 | 5 |
3 | 60 | 20 | 20 | 9 | 10 |
4 | 20 | 60 | 40 | 80 | 6 |
5 | - | 20 | 20 | 9 | 15 |
6 | - | - | 10 | 1 | 10 |
Итого | 100 | 100 | 100 | 100 | 100 |
Распределения рабочих І-го и ІІ-го участков, имеют одинаковый размах вариации и характер распределения частично отличаются: величиной варьирующего признака, т.е. центром группирования.
Среднее квадратическое отклонение показывает также как расположена основная масса единиц совокупности относительно средней арифметической. В соответствии с теоремой Чебышева можно утверждать, что независимо от формы распределения 75% значений признака попадают в интервал ; а по крайней мере 89% всех значений попадают в интервал
Необходимо отметить, что если при расчете арифметической для достаточно симметричного ряда распределения м/д не оказывают существенного влияния на ее отклонение от средней арифметической, рассчитанной по первичным данным, то при расчете дисперсии этот факт приводит к появлению систематической ошибки.
В.Ф. Шеппард установил, что ошибка в дисперсии, вызванная применением сгруппированных данных при расчете составляет 1/12 квадрата величины интервала, т.е. скорректированная дисперсия равна
І группа обобщающих показателей - характеристика центра группирования в качестве которых используют: среднюю арифметическую,
моду;
медиану.
Распределение рабочих ІІ-го и ІІІ-го участков имеют один и тот же центр группирования и симметричное расположение частот вокруг него, но отличаются пределами вариации.
ІІ группа- показатели степени вариации - т.е. характеристика колеблемости признака.
Распределение рабочих ІІІ-го и IV-го участков имеют и тот же центр группирования, пределы варьирования признака, симметричный характер ƒ расположения частот, но имеют разную степень вытянутости вдоль оси ординат, которая характеризуется показателями эксцесса.
Распределение рабочих IV-го и V-го участков показывает, что они отличаются характером распределения частот относительно центра. Для IV-го участка оно симметрично, для V-го участка оно не симметрично.