Курсовая работа: Статистические распределения и их основные характеристики
Значение переменнойЧастота повтора
f
n- f
Отсюда
Дисперсия
Средняя квадратичная равна
.
Например в результате контроля из 1000 готовых изделий 20 - бракованных.
Отсюда
1 - соответствует бракованным изделиям
0 - годной продукции
Процент барка равен .
Тогда величина дисперсии
Если признак принимает больше двух значений, то оценка вариации равна
,
где W- доля каждого признака.
Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму). Число наблюдений, по которому строится эмпирическое распределение, обычно невелико. С увеличением числа наблюдений и одновременным уменьшением величины интервала зигзаги полигона начинают сглаживаться и в результате чего получается плавная кривая, которая называется кривой распределения.
Если кривая построена по данным наблюдения, то она называется эмпирической кривой, а если она отражает закономерность соотношения вариант и частот, то она называется теоретической кривой. Исследование закономерности (формы) распределения включает решение трёх последовательных задач:
выяснение общего характера распределения
выравнивание эмпирического распределения, которое состоит в том, что на основании эмпирического распределения строится кривая y=f (x)
проверка соответствия найденного теоретического распределения эмпирическому.
В практике статистического исследования встречаются различные распределения.
Однородные совокупности характеризуются, как правило, одновершинными распределениями. Многовершинность свидетельствует о неоднородности. Появление двух вершинной или асимметричной кривой означает, нарушение при изменении условий получения и обработки сведений в этом случае необходима перегруппировка данных.
Выявление общего характера распределения предполагает не только степень его однородности, а также вычисление показателей асимметрии и эксцесса.
Симметричным является распределение в котором частота любых двух вариантов равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричного распределения
.
Поэтому показатель асимметрии, основан на соотношении показателей центра распределения: чем больше разница между средними () тем больше асимметрия ряда.