Курсовая работа: Статистические распределения и их основные характеристики
f
Средина интервала
X’
Среднее линейное отклонение:
Среднее квадратическое отклонение:
Дисперсия:
Так как средняя величина колеблемости средней годовой стоимости основных фондов составляет:
По среднему линейному отклонению - 0,822 млн. руб.
По среднему квадратическому - 1,075 млн. руб.
Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает всю представляемую совокупность.
При сравнении колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях с различной величиной средней арифметической пользуются относительными показателями вариации. Эти показатели вычисляются как отношение абсолютных показателей вариации к средней арифметической (или медиане). Используя в качестве абсолютного показателя вариации размах, среднее линейное отклонение, среднее квадратическое отклонение, относительные показатели колеблемости:
Коэффициент осцилляции -
отражает относительную колеблемость значений признака вокруг средней, крайних.
Относительное линейное отклонение
- характеризует долю усредненного значения абсолютных отклонений от средней величины.
Коэффициент вариации
Наиболее часто применяется показатель колеблемости - коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33%.
Для рассмотренного примера:
Оставалась на коэффициенте вариации, можно сделать вывод, что по размеру прибыли совокупность является однородной.
Если статистическая совокупность разбита на группы по какому-либо признаку, то для оценки влияния различных факторов, определяющих колеблемость индивидуальных значений признака, можно воспользоваться разложением дисперсии на составляющие: на межгрупповую и внутригрупповую дисперсии.
Общая дисперсия характеризует вариацию признака, которая зависит от всех условий в данной совокупности и вычисляется: