Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G
17.o(x 4 y)=8
18.o(x 3 y x )=8
19.o(x 2 y xy )=8
20.o(x 6 )=4
21.o(x 5 y )=8
22.o(x 4 yx )=4
23.o(x 7 )=8
24.o(x 6 y )=4
В соответствие с полученными результатами переобозначим элементы группы:
Обозначение | H1 | H2 | C1 | L1 | L2 | C2 | C3 | H3 | c4 | H4 | A1 | H5 | C5 | F1 | H6 |
Элемент | x | y | x2 | xy | yx | x3 | x2 y | xyx | yxyx | yxy | x 4 | x 3 y | x 2 yx | xyxy | x 5 |
Обозначение | H7 | H8 | H9 | C6 | H10 | C7 | H11 | C8 |
Элемент | x 4 y | x 3 y x | x 2 y xy | x 6 | x 5 y | x 4 yx | x 7 | x 6 y |
2.3. Вычисление таблицы умножений данной группы. Нахождение центра группы.
Ввиду большого количества громоздких вычислений, не будем приводить их.
Скажем только то, что они основываются на базовых соотношениях x 8 = e , y 8 = e ,
x 2 = y 2 =( xy )3 , а также на ряде производных соотношений.
Применяя эти рассуждения, получим таблицу умножений. Приведем все полученные элементы, а затем рассмотрим примеры их получения:
e | a1 | C1 | c2 | c3 | c4 | c5 | c6 | C7 | C8 | H1 | H2 | H3 | H4 | H5 | H6 | H7 | H8 | H9 | H10 | H11 | F1 | L1 | L2 |
a1 | e | C6 | H11 | C8 | H5 | F1 | C1 | L2 | C3 | H6 | H7 | H4 | H3 | C4 | H1 | H2 | H9 | H8 | L1 | C2 | C5 | H10 | C7 |
C1 | C6 | A1 | H6 | H7 | L1 | C7 | e | F1 | H2 | C2 | C3 | H8 | H9 | H10 | H11 | C8 | H4 | H3 | C4 | H1 | L2 | H5 | C5 |
C2 | H11 | h6 | C6 | H10 | C3 | H4 | H1 | H9 | l1 | A1 | H5 | C7 | L2 | C8 | e | C4 | F1 | C5 | H2 | C1 | H3 | H7 | H8 |
C3 | C8 | H7 | H10 | C6 | H4 | H11 | H2 | H1 | C1 | C5 | A1 | C2 | H10 | L1 | F1 | e | H5 | C4 | H8 | L2 | C2 | H9 | H6 |
C4 | H5 | L1 | C3 | H4 | C5 | A1 | H10 | C6 | H3 | H2 | H1 | C2 | H11 | F1 | H8 | H9 | H6 | H7 | L2 | C8 | e | C7 | C1 |
C5 | F1 | C7 | C8 | H3 | A1 | H5 | L2 | H10 | H4 | H7 | H9 | H11 | C2 | e | H2 | H8 | H1 | H6 | C1 | C3 | C4 | C6 | L1 |
C6 | C1 | E | H1 | H2 | H10 | L2 | A1 | C5 | H7 | H11 | C8 | H9 | H8 | L1 | C2 | c3 | H3 | H4 | H5 | H6 | C7 | C4 | F1 |
C7 | L2 | F1 | H2 | H8 | C6 | H10 | C5 | C4 | H9 | C8 | H3 | H1 | H6 | C1 | C3 | F1 | C2 | H11 | A1 | H7 | L1 | e | H5 |
C8 | C3 | H2 | L2 | C1 | H3 | C2 | H7 | H6 | C6 | F1 | e | H10 | L1 | H4 | C5 | A1 | C4 | H5 | H9 | C7 | H11 | H8 | H1 |
H1 | H6 | C2 | A1 | H5 | H2 | H8 | H11 | H4 | C4 | C1 | L1 | C5 | F1 | H7 | C6 | H10 | C7 | L2 | C8 | e | H9 | C3 | H3 |
H2 | H7 | C3 | C5 | A1 | H8 | H6 | C8 | H11 | e | L2 | C1 | C4 | H5 | H9 | C7 | C6 | L1 | H10 | H3 | F1 | H1 | H4 | C2 |
H3 | H4 | H8 | H10 | L2 | C2 | C3 | H9 | H7 | C7 | H5 | F1 | C6 | C1 | H11 | C4 | C5 | e | A1 | H1 | L1 | C8 | H6 | H2 |
H4 | H3 | H9 | L2 | H10 | H11 | C2 | H8 | H2 | L1 | F1 | c5 | C1 | C6 | C8 | h5 | C4 | A1 | e | H6 | C7 | C3 | H7 | H1 |
H5 | C4 | H10 | H4 | H11 | F1 | e | L1 | C1 | C2 | H8 | H6 | C3 | C8 | C5 | H9 | H1 | H7 | H2 | C7 | H3 | A1 | L2 | C6 |
H6 | H1 | H11 | e | C4 | C5 | H9 | C2 | H3 | H5 | C6 | H10 | F1 | C5 | H2 | C1 | L1 | L2 | C7 | C3 | A1 | H8 | C8 | H4 |
H7 | H2 | C8 | F1 | e | H9 | H1 | C3 | C2 | A1 | C7 | C6 | H5 | C4 | H8 | L2 | C1 | H10 | L1 | H4 | C5 | H6 | H3 | H11 |
H8 | H9 | H4 | C4 | H5 | H2 | H1 | H3 | C8 | F1 | C7 | L2 | e | A1 | H7 | L1 | H10 | C1 | C6 | C2 | C5 | H2 | H11 | C3 |
H9 | H8 | H3 | H5 | F1 | H1 | H2 | H4 | C3 | C5 | L1 | C7 | A1 | e | H6 | H10 | L2 | C6 | C1 | H11 | C4 | H7 | C2 | C8 |
H10 | L1 | C4 | H9 | H1 | L2 | C1 | H5 | A1 | H6 | H4 | H11 | H7 | H2 | C7 | H3 | C2 | C8 | C3 | F1 | H8 | C6 | C5 | e |
H11 | C2 | H1 | C1 | L1 | C8 | H3 | H6 | H8 | H10 | e | C4 | L2 | C7 | C3 | A1 | H5 | C5 | F1 | H7 | C6 | H4 | H2 | H9 |
f1 | C5 | L2 | H3 | C2 | e | C4 | C7 | L1 | H11 | H9 | H8 | C8 | C3 | A1 | H7 | H6 | H2 | H1 | C6 | H4 | H5 | C1 | H10 |
l1 | H10 | H5 | H8 | H6 | C7 | C6 | C4 | e | H1 | H3 | C2 | H2 | H7 | L2 | H4 | H11 | C3 | C8 | C5 | H9 | C1 | F1 | A1 |
L2 | C7 | C5 | H7 | H9 | C1 | L1 | F1 | H5 | H8 | C3 | H4 | H6 | H1 | C6 | C8 | H3 | H11 | C2 | e | H2 | H10 | A1 | C4 |
Основным методом проверки правильности составления является присутствие
каждого элемента в каждой строке и в каждом столбце один раз.
Из данной таблицы находим центр группы, сравнивая строку и столбец одного и
того же элемента, т.е. определяя, коммутируют ли элементы друг с другом.
В итоге получаем следующее множество: Z (G ) = {e , a1, c 1 }.
2.4. Составление таблицы подгрупп, порожденных двумя элементами.
Подгруппы будем обозначать по тому же принципу, что и элементы, т.е. из 2-х
элементов через Ai, из 3-х элементов – Bi и т.д.
Заметим, что таблица будет симметрична относительно главной диагонали.
Используя таблицу умножений, получим:
A1={e,a1}Z2
C1={e,a1,c1,c6}Z4
F1={e,a1,c4,c5,f1,h5} Z6
H1={e,a1,c1,c3,c6,c8,h2,h7} Z8
H2={e,a1,c1,c6,h3,h4,h8,h9} Z8