Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G

17.o(x 4 y)=8

18.o(x 3 y x )=8

19.o(x 2 y xy )=8

20.o(x 6 )=4

21.o(x 5 y )=8

22.o(x 4 yx )=4

23.o(x 7 )=8

24.o(x 6 y )=4

В соответствие с полученными результатами переобозначим элементы группы:

Обозначение H1 H2 C1 L1 L2 C2 C3 H3 c4 H4 A1 H5 C5 F1 H6
Элемент x y x2 xy yx x3 x2 y xyx yxyx yxy x 4 x 3 y x 2 yx xyxy x 5
Обозначение H7 H8 H9 C6 H10 C7 H11 C8
Элемент x 4 y x 3 y x x 2 y xy x 6 x 5 y x 4 yx x 7 x 6 y

2.3. Вычисление таблицы умножений данной группы. Нахождение центра группы.

Ввиду большого количества громоздких вычислений, не будем приводить их.

Скажем только то, что они основываются на базовых соотношениях x 8 = e , y 8 = e ,

x 2 = y 2 =( xy )3 , а также на ряде производных соотношений.

Применяя эти рассуждения, получим таблицу умножений. Приведем все полученные элементы, а затем рассмотрим примеры их получения:

e a1 C1 c2 c3 c4 c5 c6 C7 C8 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 F1 L1 L2
a1 e C6 H11 C8 H5 F1 C1 L2 C3 H6 H7 H4 H3 C4 H1 H2 H9 H8 L1 C2 C5 H10 C7
C1 C6 A1 H6 H7 L1 C7 e F1 H2 C2 C3 H8 H9 H10 H11 C8 H4 H3 C4 H1 L2 H5 C5
C2 H11 h6 C6 H10 C3 H4 H1 H9 l1 A1 H5 C7 L2 C8 e C4 F1 C5 H2 C1 H3 H7 H8
C3 C8 H7 H10 C6 H4 H11 H2 H1 C1 C5 A1 C2 H10 L1 F1 e H5 C4 H8 L2 C2 H9 H6
C4 H5 L1 C3 H4 C5 A1 H10 C6 H3 H2 H1 C2 H11 F1 H8 H9 H6 H7 L2 C8 e C7 C1
C5 F1 C7 C8 H3 A1 H5 L2 H10 H4 H7 H9 H11 C2 e H2 H8 H1 H6 C1 C3 C4 C6 L1
C6 C1 E H1 H2 H10 L2 A1 C5 H7 H11 C8 H9 H8 L1 C2 c3 H3 H4 H5 H6 C7 C4 F1
C7 L2 F1 H2 H8 C6 H10 C5 C4 H9 C8 H3 H1 H6 C1 C3 F1 C2 H11 A1 H7 L1 e H5
C8 C3 H2 L2 C1 H3 C2 H7 H6 C6 F1 e H10 L1 H4 C5 A1 C4 H5 H9 C7 H11 H8 H1
H1 H6 C2 A1 H5 H2 H8 H11 H4 C4 C1 L1 C5 F1 H7 C6 H10 C7 L2 C8 e H9 C3 H3
H2 H7 C3 C5 A1 H8 H6 C8 H11 e L2 C1 C4 H5 H9 C7 C6 L1 H10 H3 F1 H1 H4 C2
H3 H4 H8 H10 L2 C2 C3 H9 H7 C7 H5 F1 C6 C1 H11 C4 C5 e A1 H1 L1 C8 H6 H2
H4 H3 H9 L2 H10 H11 C2 H8 H2 L1 F1 c5 C1 C6 C8 h5 C4 A1 e H6 C7 C3 H7 H1
H5 C4 H10 H4 H11 F1 e L1 C1 C2 H8 H6 C3 C8 C5 H9 H1 H7 H2 C7 H3 A1 L2 C6
H6 H1 H11 e C4 C5 H9 C2 H3 H5 C6 H10 F1 C5 H2 C1 L1 L2 C7 C3 A1 H8 C8 H4
H7 H2 C8 F1 e H9 H1 C3 C2 A1 C7 C6 H5 C4 H8 L2 C1 H10 L1 H4 C5 H6 H3 H11
H8 H9 H4 C4 H5 H2 H1 H3 C8 F1 C7 L2 e A1 H7 L1 H10 C1 C6 C2 C5 H2 H11 C3
H9 H8 H3 H5 F1 H1 H2 H4 C3 C5 L1 C7 A1 e H6 H10 L2 C6 C1 H11 C4 H7 C2 C8
H10 L1 C4 H9 H1 L2 C1 H5 A1 H6 H4 H11 H7 H2 C7 H3 C2 C8 C3 F1 H8 C6 C5 e
H11 C2 H1 C1 L1 C8 H3 H6 H8 H10 e C4 L2 C7 C3 A1 H5 C5 F1 H7 C6 H4 H2 H9
f1 C5 L2 H3 C2 e C4 C7 L1 H11 H9 H8 C8 C3 A1 H7 H6 H2 H1 C6 H4 H5 C1 H10
l1 H10 H5 H8 H6 C7 C6 C4 e H1 H3 C2 H2 H7 L2 H4 H11 C3 C8 C5 H9 C1 F1 A1
L2 C7 C5 H7 H9 C1 L1 F1 H5 H8 C3 H4 H6 H1 C6 C8 H3 H11 C2 e H2 H10 A1 C4

Основным методом проверки правильности составления является присутствие

каждого элемента в каждой строке и в каждом столбце один раз.

Из данной таблицы находим центр группы, сравнивая строку и столбец одного и

того же элемента, т.е. определяя, коммутируют ли элементы друг с другом.

В итоге получаем следующее множество: Z (G ) = {e , a1, c 1 }.

2.4. Составление таблицы подгрупп, порожденных двумя элементами.

Подгруппы будем обозначать по тому же принципу, что и элементы, т.е. из 2-х

элементов через Ai, из 3-х элементов – Bi и т.д.

Заметим, что таблица будет симметрична относительно главной диагонали.

Используя таблицу умножений, получим:

A1={e,a1}Z2

C1={e,a1,c1,c6}Z4

F1={e,a1,c4,c5,f1,h5} Z6

H1={e,a1,c1,c3,c6,c8,h2,h7} Z8

H2={e,a1,c1,c6,h3,h4,h8,h9} Z8

К-во Просмотров: 361
Бесплатно скачать Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G