Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G

столбца h ÎG пишется элемент gh.

Таблица Кэли обладает важным свойством: в каждой строке и каждом столбце

каждый элемент группы встречается ровно один раз. Таким образом, каждый

столбец и каждая строка являются некоторой перестановкой элементов группы.

1.2. Определение подгруппы. Свойства подгрупп.

Определение 1. Подмножество H группы G называется подгруппой, если

выполнены следующие условия

1) е Î H;

2) " h1 , h2 Î H h1 • h2 ÎH;

3) " h ÎH h-1ÎH.

Как мы уже знаем, каждую конечную группу можно задать с помощью таблицы

умножений или таблицы Кэли. В каждой строке и каждом столбце таблицы Кэли

каждый элемент группы встречается ровно один раз. Если элементы группы

перенумеровать, то каждому элементу будет соответствовать некоторая

перестановка.

Определение 2. Если H - подгруппа группы G и g Î G, то множество gH = { gh | h

Î H}

называется левым смежным классом группы G по подгруппе H. Соответственно,

множество Нg называется правым смежным классом.

Каждое разбиение группы G на левые (правые) смежные классы по любой

подгруппе H задает некоторое отношение эквивалентности.

Определение 3. Число элементов конечной группы или, соответственно,

подгруппы будем называть ее порядком.

Определение 4. Пусть а 1 ,… ,а n Î G. Через < а 1 ,… ,а n > будем обозначать

наименьшую подгруппу в G, содержащую элементы а 1 ,… ,а n . Если < а 1 ,… ,а n >= G,

то элементы {а 1 ,… ,а n } будем называть системой образующих группы G. Систему

1 ,… ,а n } будем называть минимальной системой образующих группы G, если

после удаления любого элемента оставшееся множество уже не будет являться

системой образующих для G. Группу G будем называть циклической, если

К-во Просмотров: 356
Бесплатно скачать Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G